
Kamaelia:

Pragmatic Concurrency
Michael Sparks

Tutorial Notes

Contents

Preface
1. The 30,000 foot view
2. Building your own Kamaelia Core
 2.1 Microprocess ­ A Generator with Context
 2.2 Scheduler ­ Running lots of microprocesses
 2.3 Interlude
 2.4 Simple Component
 2.5 Postman – Ensuring Deliveries
 2.6 Interlude 2
 2.7 Summary
 2.8 Mini­Axon Full Source
3. Axon & Kamaelia ­ Deep Dive
 3.1 Components
 3.2 Syntactic Sugar For Components
 3.3 Building Components
 3.4 Components Core to Systems
 3.5 Pipelines
 3.6 Graphlines
 3.7 Incrementally Growing Systems
 3.8 PAR Components
 3.9 Seq Components
 3.10 Backplanes
 3.11 Server Core
 3.12 ServerCore & Backplanes
 3.13 Shell Equivalence
4 Kamaelia, in non­Kamaelia Systems
 4.1 Axon.Handle
 4.2 Augmenting Existing Systems
 4.3 Using Axon.Handles
 4.4 Embedding a Python Interpreter
5 Building a Bulletin Board
 5.1 Building up the initial protocol
 5.2 Writingthe Bulletin Board UI
 5.3 Summary
 Bulletin Board, Full Source
6 Where next?
 Getting Kamaelia
 Acknowledgements

3
4
9
9
10
12
12
14
15
16
17
19
20
24
28
33
33
42
44
46
47
49
52
53
55
56
56
58
60
60
63
64
73
79
80
83
84
84

© 2009 Michael Sparks, sparks.m@gmail.com, All Rights Reserved
An up-to-date version of this tutorial, under a more liberal license, will be maintained
and available from http://www.kamaelia.org/KamaeliaPragmaticConcurrency

2 Kamaelia

Preface

Why use concurrency? Since concurrency is viewed as an advanced topic by many

developers, this question is often overlooked. However, many real world systems, including

transportation, companies, electronics and Unix systems are highly concurrent and

accessible by the majority of people. So, one motivation can be “many hands make light

work”.

However, with software this maxim often appears to be false – in no small part due to the

tools we use to create concurrent systems. Despite this, the need for concurrency often

creeps into many systems – even something as basic as “attaching a debugger”.

Kamaelia is a toolset and mindset aimed at assisting in structuring your code such that you

can focus on the problem you want to solve, but in a way that results in naturally reusable

code that happens to be concurrent.

This tutorial aims to introduce you to the follow 4 core aspects of Kamaelia systems:

Axon

All Kamaelia systems are dependent on this core library – it provides you with tools

for making systems which are naturally concurrent. Its primary metaphor is

components with inboxes and outboxes, which get linked by parent components.

Kamaelia Components

The bulk of Kamaelia is actually a large collection of components. By themselves

each component is useful, but their real power comes from being linked to each

other, like programs in /usr/bin get linked together, forming pipelines.

Applications

This is the point of Kamaelia – to build useful systems. Kamaelia was originally

designed for naturally concurrent problems, so there was a desire to make this

simple(r) to work with. Using Axon based components means applications generate

more reusable components, and also have a naturally concurrent structure. This

can simplify many applications, allowing their reuse in unexpected ways.

Testing & Debugging

Testing & debugging concurrent systems is considered hard, we'll cover some

approaches we can use in Kamaelia for debugging systems. Some of these are

surprisingly familiar. Indeed, some can be used in non-Kamaelia based systems.

Kamaelia was designed originally to make maintenance of highly concurrent network

systems simpler, but has general application in a wider variety of problem domains,

including desktop applications, web backend systems (eg video transcode & SMS services),

through to tools for teaching a child to read and write.

A Tutorial Overview 3

Kamaelia: Pragmatic Concurrency

The 30,000 foot view

We start at the beginning with an overview of the various aspects of a Kamaelia.

In order to understand Kamaelia it's useful to

review why it exists. The original use case was in

the case of network systems and a recognition

that hardware is going massively multicore.

Whilst there are concurrency languages – Erlang,

Occam, Bash(!) – it is likely that no one language

will rule. So, in order to work with either naturally

concurrent problems and/or hardware, we need

better tools – conceptual, libraries, etc.

Kamaelia's core goal is to harness concurrency.

Against this backdrop, few developers get

properly trained with dealing with concurrency,

because crucially parallel control flow is often

skipped. The downside of this is that it means

that many developers do not get taught the

downsides of its traditional abstraction.

For example, it's well known that global data is

generally a bad idea in traditional code, but less

so that shared data in a parallel system is a

similar cause of pain, in similar ways.

Beyond this, Kamaelia is not intended to be a

theoretical system.

Its original use case was in the realm of

experimental network servers, and since then it's

grown to encompass desktop applications,

media rich systems, server systems, access to

third party libraries, etc.

Crucially, we've also worked on trying to make Kamaelia's approach & metaphors

accessible – to both novices and experienced developers alike. We've tested this in through

participation in GSOC mentoring programmes, and also a variety of other systems.

4 Kamaelia

That leads to the question “what sort of systems?”

The diagram on the right gives a general overview

of the scope of the sort of applications, and more

detail on these can be found on the website.

Every one of these systems is built, like shell

scripts, using small, communicating chunks of

code, which can be used in other systems.

This mixability allows entire sub-systems to be

easily integrated with many others, meaning

Kamaelia becomes more flexible with the more

systems that you build.

The core approach boils down to a few common

points:

• All data has a single owner at any point in

time - no unconstrained sharing of data.

• Components don't know about each other,

they only know about inboxes and outboxes

• Data flows from outboxes to inboxes

• Code is data – you cannot call functions

owned by other components, you send a

message.

This naturally then leads to the question of “how

do I share data, since I have to sometimes”. The

approach taken is to use “Software Transactional

Memory”, which can be very closely approximated

as “version control for variables”.

It doesn't actually store the history, but it allows

you to find out if something can go wrong, and

prevents you from storing bad data accidentally.

Slightly more philosophically, when talking about

concurrency metaphors, like little robots doing

work, or inboxes & outboxes are useful, since they

start allowing us to think about what's happening

more clearly. Specifically 1st,2nd,3rd person views.

Eg 1st person: “I change my state” using a method

or action. 2nd Person: YOU may want 'me' to do

something, so you send me a message on an

inbox.

Whereas 3rd person maps to “I may want 'someone else' to act on a piece of work I've done”

so I send a message to an outbox.

A Tutorial Overview 5

It also becomes natural to think of “who changes

what?”. Inboxes are public, write only outside,

read only inside. Outboxes are also public, and

write only from inside and read only outside.

When you take data from an inbox you own it,

when you put it in an outbox, you don't.

All other data & methods are then considered

private to the component, since their operation

requires a first person view of the system.

As a comparison with Actor systems, these are

generally defined as only having inboxes. This

means that in order to send a message, you first

need to know the recipient. Another aspect is

that objects have both “normal” methods and

methods which are actually message passing.

This leads to the fact that you can be expected

to call what looks like a method on another

object. This can be a source of ambiguity about

what you can/should call, as well as receiver

hardcoding.

By using explicit outboxes you gain some

relatively obvious benefits:

• Late binding, allowing dynamic rewiring

• The wrapper/trace components insertable

into systems without changing code

• System introspection

• Clarity about what methods you can call on

an object. (__init__(), .activate() & .run())

This also means that you naturally start creating

higher level components that join things

together, forming a little language of joining

things.

Some of the earliest were things like Pipeline &

Graphline, but it becomes natural to build others,

as the diagram to the left shows. This DSL which

is still be codified, then effectively allow you

to start building new systems in a declarative manner, and also makes the application

structure significantly clearer, as we'll see. (esp. with systems you've not seen before!)

6 Kamaelia

Some of these are Chassis components – they

need to have other components plugged into it to

be useful. Let's look at a few.

Pipeline performs a well known pattern. In this

example, a component converts keyboard presses,

and into messages regarding direction. These are

piped to the second component acts upon them

moving the sprite on screen. Pipeline naturally

pipes messages from the outboxes of one

component to the inboxes of the next.

Graphlines form another pattern. This example has

a “Chooser”, which knows about image names.

When sent a message from one of the buttons, it

emits an filename to the Image component which

displays it. This creates a simple presentation tool.

In this case, the Graphline is passed another

parameter – linkages – explicitly linking the

outputs from components to each other. (This

example in is the Examples/ directory).

ServerCore is a slightly more complex chassis.

Rather than plug one component into it, you

provide it with a factory method which will create

components to talk to the user.

Fundamentally, it handles all the boring parts of a

server, leaving you to handle the “chatting to the

user” part of the problem.

As a result a protocol handler component receives

bytes from the user on its main inbox, and sends

bytes to the user on its main outbox. (Much like

getting & sending data from/to stdin & stdout)

This allows you to build servers of a variety of

different kinds, from echo servers, through email,

web & even embedded python consoles.

We'll see a variety of different servers as we go

through this tutorial.

A Tutorial Overview 7

This example server waits for connections on

port 1601. When a user connects, GreeterServer

calls “greeter” to create a component to handle

the connection.

The component created here is a

PureTransformer component that takes the

message, transforms it some way, and sends

the transformed version back to the user. In this

case the transformation is to prepend “hello”

(PureTransformer makes no sense without the

supplied transform)

This example is substantially more interesting,

and uses both ServerCore and another form of

component – Backplanes. Backplane provides a

service – named “Radio” here – which can be

used by other components.

Specifically, PublishTo is a component that takes

messages from its main inbox, and publishes

them to the named backplane.

SubscribeTo plugs into named backplane's output, sending messages it receives to its

main outbox. These three component – Backplane, PublishTo, SubscribeTo provide a

Kamaelia system an internal broadcast system.

As a result, this example does this...

• Creates a Backplane service called Radio

• Creates a component DVB_Multiplex that tunes into Radio 1, pipes that into a

PublishTo component that publishes that to the Radio backplane.

• Runs a ServerCore that waits for users to connect on port 1600

Then, when a user connects to port 1600...

• ServerCore calls the function 'radio' – the supplied protocol factory. This returns a

SubscribeTo component, which takes a copy of all radio data sent to the backplane

Radio, and sends it out its main outbox.

• This results in the user being sent back the DVB-T stream for Radio 1.

Summary

Kamaelia's core goal is to make it easier to build concurrent systems. It uses a component

model, that encourages the user to link together basic building blocks into more complex

systems explicitly. A side effect of this is that systems can be much clearer & simpler as a

result, with the fact we're using concurrency being – by the by – it can simplify the code –

allowing us to focus on the higher level problems.

8 Kamaelia

2. Building your own Kamaelia Core

One of the more common issues that I hear when experienced developers look at a

Kamaelia system – for example regarding the Radio 1 re-streamer – is that “it can't be that

simple”. However, this is often due to questions effectively relating to “how does that work

under the hood”.

As a result, in order to explain this, we have a tutorial designed to teach the underlying

principles in Kamaelia, based on the old saying: I hear, and I forget. I see, and I remember.
I do, and I understand. By building your own core, and seeing what actually goes into it –

even simplified slightly – demystifies many of the core aspects of Kamaelia.

This part of the tutorial covers this, and is gently paced – since it was originally written for a

novice developer. However the core of the idea is that you will hopefully understand the

system better if you understand what's going on under the hood.

Python pre-requisites:

• classes, methods, functions, if/elif/else, while, try..except, for..in.., generators

(yield), lists, dictionaries, tuples.

Generators have a brief recap at the end of this booklet.

2.1 Microprocesses - A Generator with Context

Axon is built on top of generators with some added context. Whilst the most common

version of this a user actually uses is called a component, this is a specialisation of the

general concept - a generator with context.

Exercise: Given this outline class, fill in the described functionality.

class microprocess(object):

 def __init__(self):

Takes no arguments. (aside from self)

into this put any initialisation you might need (hint: call the super-class's __init__)
 def main(self):

This should be a generator that simply yields 1 value - specifically a 1

Discussion:

Clearly we can create 5 of these now:

a = microprocess()

b = microprocess()

c = microprocess()

Calling their main method results in us being given a generator:

>>> a.main()

<generator object at 0x40396d2c>

>>> b.main()

<generator object at 0x40396ccc>

A Tutorial Overview 9

>>> c.main()

<generator object at 0x40396d2c>

We can then run these generators in the usual way:

>>> for i in a.main():

... print "Value", I

...

Value 1

>>> for i in b.main():

... print "Value", I

...

Value 1

>>> for i in c.main():

... print "Value", I

...

Value 1

Since these generators have access to an object – self - we have a mechanism for adding

context to generators, and we've called that a microprocess. The next step is to enable us

to set lots of these running.

2.2 Scheduler - A means of running lots of microprocesses

The purpose of this exercise is to enable you to be able to allow any number of

microprocesses you've just created to be run at once. This exercise is essentially intended

to demystify the scheduler. Its internals boil down to “run this, then this, then this, then

this”.

Exercise: Again, given this outline class, fill in the described functionality.

class scheduler(microprocess):

 def __init__(self):

Initialise the scheduler by setting up the runqueue (active) and newqueue lists after

calling the super-class's __init__ method.

Remember to call your super-class's __init__ method

Then add your attributes to the object

active – should be a list. (initially empty)

newqueue - should also be a list. (initially empty)

 def main(self):

This loops through all the microprocesses and runs each of them, 100 times.

The main body of this consists of a loop – make it stop after 100 iterations.

Inside this loop...

Using current as a loop value, have another loop, that loops through the

contents of self.active, and ...

yield control here immediately a value that is not -1

try calling current.next()

If a StopIteration is raised, silence it, and move onto the next iteration

of current. (ie allow a microprocess to stop if it just “stops”)

10 Kamaelia

Otherwise, as long as the value returned was not -1, append current onto

the self.newqueue list. (ie allow a microprocess to stop if it “stops” cleanly)

After looping through self.active, replace it with the contents of self.newqueue, and

replace self.newqueue with a new, empty list.

 def activateMicroprocess(self, someprocess):

This adds new microprocesses to the runqueue for the scheduler.

Assume that someprocess is a microprocess. Call its main() method returning a

generator, and append this generator to the end of self.newqueue

Discussion:

This class provides us with a rudimentary way of activating generators embedded inside a

class, adding them to a runqueue and then letting something run them. So let's try it. The

default microprocess is relatively boring, so let's create some microprocesses that are little

more than an age old program that repeatedly displays a messae. To do that we declare a

class subclassing microprocess and provide a generator called main.

We'll also capture a provided argument:

class printer(microprocess):

 def __init__(self, tag):

 super(printer, self).__init__()

 self.tag = tag

 def main(self):

 while 1:

 yield 1 # Must be a generator

 print self.tag

Note that this generator doesn't ever exit. We can then create a couple of these printers:

X = printer("Hello World")

Y = printer("Game Over") # Another well known 2 word phrase :-)

Next we can create a scheduler:

myscheduler = scheduler()

We can then ask this scheduler to activate the two microprocesses - X & Y :

myscheduler.activateMicroprocess(X)

myscheduler.activateMicroprocess(Y)

We can then run our scheduler by iterating through its main method:

for _ in myscheduler.main():

 pass

If we run this we get the following output (middle of output snipped):

>>> for _ in myscheduler.main():

... pass

...

Hello World

Game Over

Hello World

Game Over

...

A Tutorial Overview 11

Hello World

Game Over

>>>

As you can see, the scheduler hits the 100th iteration and then halts.

2.3 Interlude

So far we've created a mechanism for giving a generator some implicit context by

embedding it inside a microprocess class. We've also created a simple microprocess that

repeatedly displays the same message over and over again. We've also created a simple

mechanism for setting lots of microprocesses running and watching them just go.

This is all well and good and core aspects of Axon. However another core aspect is enabling

these generators to talk to each other. Doing this means we can divide responsibility for a

task between file reading, and display. The metaphor we choose to use in Axon is a very old

one - that of a worker at a desk with a number of inboxes and a number of outboxes. The

worker receives messages on his/her inboxes. He/She does some work, and send results

on his/her outboxes. We can then have something that takes messages from an outbox

(called saying "finance") and delivers them to the inbox of somewhere else (say the inbox

"in" on the finance desk/component).

An alternate analogy we don't take here is one of computer chips with pins and wires.

Signals would get sent to pins transmitted along the wires (links) to other pins on other

chips. A more software oriented alternative is unix pipelines and standard file descriptors. A

unix command line program always* has access to stdin, which it reads but has no idea of

the source; stdout it can write to, but has no idea of destination (and stderr). Obviously

however unix command line programs don't know if they're in a pipeline, or standalone.

The key point we have is active objects talking only to local interfaces, and not knowing how

those local interfaces are used.

So the next step is to first create this standard interface for external communications, and

then a mechanism for allowing communication between these interface.

2.4 Simple Component - Microprocesses with standard

external interfaces

Exercise: Again, given this outline class, fill in the described functionality.

class component(microprocess):

 def __init__(self):

As well as calling the super-class's __init__ method, this method sets up a collection of

inboxes and outboxes – these are named, and are represented using lists.

Call the super-class __init__ method

Create a dictionary – self.boxes – with 2 keys - “inbox” and “outbox”.

The values for both should be empty lists. You could create more inboxes and

outboxes this way, but lets keep things simple initially.

12 Kamaelia

 def send(self,value, outboxname):

This is for putting values into outboxes – for them to be later picked up and passed on

elsewhere.

Find the list called outboxname in self.boxes and append value to it.

 def recv(self,inboxname):

This is the logical opposite of send. We take values from inboxes and return it.

Find the list called inboxname in self.boxes. Pop the first value from it, and return that to

the user. This could throw an exception. If it does, let the user deal with it.

 def dataReady(self, inboxname):

This returns a true value if there is any data in the given inbox, and if so, how many

values are waiting.

Having found the list inboxname in self.boxes, simply return its length.

Discussion:

Ok that's a fairly long description, but a fairly simple implementation. So what's this done?

It's enabled us to send data to a running generator and recieve data back. We're not

worried what the generator is doing at any point in time, and so the communications

between us and the generator (or between generators) is asynchronous.

An extension to the suggested __init__ is to do the following:

class component(microprocess):

 Boxes = {

 "inbox" : "This is where we expect to receive messages",

 "outbox" : "This is where we send results/messages"

 }

 def __init__(self):

 super(simplecomponent, self).__init__()

 self.boxes = {}

 for box in self.Boxes:

 self.boxes[box] = list()

This small extension means that classes subclassing component can have a different set of

inboxes and outboxes. For example:

class spinnyThing(component):

 Boxes = {

 "inbox" : "As per default",

 "outbox" : "As per defaults",

 "rotation" : "Expect an integer between 0 and 359 (degrees)",

 }

That said, components by themselves are relatively boring. Unless we have some way of

moving the data between generators we haven't gained anything (really) beyond the printer

example above. So we need someone/something that can move data/messages from

outboxes and deliver to inboxes...

A Tutorial Overview 13

2.5 Postman - A Microprocess that performs deliveries!

Given we have outboxes and inboxes, it makes sense to have something that can handle

deliveries between the two. For the purpose of this exercise, we'll create a microprocess

that can look at a single outbox for a single component, take any messages deposited there

and pass them the an inbox of another component. In terms of the component

implementation so far we can use dataReady to check for availability of messages, recv to

collect the message from the outbox, and send to deliver the message to the recipient

inbox.

Exercise: Again, given this outline class, fill in the described functionality.

class postman(microprocess):

 def __init__(self, source, sourcebox, sink, sinkbox):

Store copies of all the arguments as object attributes, after remembering to call the

super-class __init__ method.

 def main(self):

Loop for ever, and...

When data (is) Ready at the source component's sourcebox, recv the latest value

waiting, and send it onto the sink components sinkbox.

Discussion:

Given this, we can now start building interesting systems. We have mechanisms for

enabling concurrency in a single process (microprocess & scheduler), a mechanism for

adding communications (postboxes) to a microprocess (component) and a mechanism for

enabling deliveries between components. Whilst we (the Kamaelia team) can see from an

optimised version that the postman can actually be optimised out of the system, this simple

mini-axon shows the core elements of Kamaelia quite nearly in a microcosm.

One full version of this mini-axon can be found here: Mini Axon Full, which should now be

clear what it's doing how and why.

A simple example we can now create is a trivial system with one component creating some

data and sending it to another one for display.

class Producer(component):

 def __init__(self, message):

 self.message = message

 def main(self):

 while 1:

 yield 1

 self.send(self.message, "outbox")

class Consumer(component):

 def main(self):

 count = 0

 while 1:

 yield 1

 count += 1 # This is to show our data is changing :-)

14 Kamaelia

 if self.dataReady("inbox"):

 data = self.recv("inbox")

 print data, count

p = Producer("Hello World")

c = Consumer()

postie = postman(p, "outbox", c, "inbox")

myscheduler = scheduler()

myscheduler.activateMicroprocess(p)

myscheduler.activateMicroprocess(c)

myscheduler.activateMicroprocess(postie)

for _ in myscheduler.main():

 pass

Running the above system then results in the following output:

Hello World 2

Hello World 3

...

Hello World 97

Hello World 98

2.6 Interlude 2

If you've come this far, you may be wondering the worth of what you've acheived. Essentially

you've managed to implement the core of a working Axon system, specifically on the most

used aspects of the system. Sure, there is some syntactic sugar relating to creation and

managing of links, but that's what it is - sugar.

One of the longer examples on the Kamaelia website, specifically in the blog area, is how to

build new components. That's probably the next logical place to start looking. However,

taking one of the components on that page, we find that the core implementation of them

matches the same core API as the component system you've implemented.

For example, let's take a look at the multicast sender.

class Multicast_sender(component):

This grabs some initial values, and calls the super class's initialiser:

 def __init__(self, local_addr, local_port, remote_addr, remote_port):

 super(Multicast_sender, self).__init__()

 self.local_addr = local_addr

 self.local_port = local_port

 self.remote_addr = remote_addr

 self.remote_port = remote_port

The main function/generator then just- sets up the socket, waits for data and sends it out:

def main(self):

 sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM,

 socket.IPPROTO_UDP)

 sock.bind((self.local_addr,self.local_port))

 sock.setsockopt(socket.IPPROTO_IP, socket.IP_MULTICAST_TTL, 10)

A Tutorial Overview 15

 while 1:

 if self.dataReady("inbox"):

 data = self.recv()

 l = sock.sendto(data, (self.remote_addr,self.remote_port));

 yield 1

From this, it should be clear that this will work inside the mini-axon system you've created.

Similarly, we can create a simple file reading component thus:

class FileReader(component):

 def __init__(self, filename):

 super(ReadFileAdapter, self).__init__()

 self.file = open(filename, "rb",0)

 def main(self):

 yield 1

 for line in self.file.xreadlines():

 self.send(line, "outbox")

 yield 1

This can then also be used using the component system you've just created to build a

simplistic system for sending data to a multicast group:

reader = FileReader("fortune.txt")

sender = Multicast_sender("0.0.0.0", 0, "224.168.2.9", 1600)

postie = Postman(reader, "outbox", sender, "inbox")

That can then be activated and run in the usual way:

myscheduler = scheduler()

myscheduler.activateMicroprocess(reader)

myscheduler.activateMicroprocess(sender)

myscheduler.activateMicroprocess(postie)

for _ in myscheduler.main():

 pass

2.7 Summary

This page has hopefully helped you build a core component system based on Kamaelia's

Axon. It should be clear as well from this that the core of Kamaelia is actually quite small.

We've found a number of aspects which we can optimise, add in syntactic sugar, and we're

discovering that certain facilities are needed, and can be useful. However the raw core is

simple - it's about generators communicating with inboxes and outboxes, and then building

interesting systems on top of that.

The next step we'd normally recommend at this point is to build some interesting systems.

Some exercises which will hopefully be helpful will appear as time progresses.

The next step we'd normally recommend at this point is to build some interesting systems.

Some exercises which will hopefully be helpful will appear as time progresses.

16 Kamaelia

2.8 Mini-Axon - Full Source
class microprocess(object):

 def __init__(self):

 super(microprocess, self).__init__()

 def main(self):

 yield 1

class scheduler(microprocess):

 def __init__(self):

 super(scheduler, self).__init__()

 self.active = []

 self.newqueue = []

 def main(self):

 for i in xrange(100):

 for current in self.active:

 yield 1

 try:

 result = current.next()

 if result is not -1:

 self.newqueue.append(current)

 except StopIteration:

 pass

 self.active = self.newqueue

 self.newqueue = []

 def activateMicroprocess(self, someprocess):

 microthread = someprocess.main()

 self.newqueue.append(microthread)

class component(microprocess):

 Boxes = {

 "inbox" : "This is where we expect to receive messages for work",

 "outbox" : "This is where we expect to send results/messages to after doing work"

 }

 def __init__(self):

 super(component, self).__init__()

 self.boxes = {}

 for box in self.Boxes:

 self.boxes[box] = list()

 def send(self, value, outboxname):

 self.boxes[outboxname].append(value)

 def recv(self, inboxname):

 result = self.boxes[inboxname][0]

 del self.boxes[inboxname][0]

 return result

 def dataReady(self, inboxname):

 return len(self.boxes[inboxname])

A Tutorial Overview 17

class postman(microprocess):

 def __init__(self, source, sourcebox, sink, sinkbox):

 self.source = source

 self.sourcebox = sourcebox

 self.sink = sink

 self.sinkbox = sinkbox

 def main(self):

 while 1:

 yield 1

 if self.source.dataReady(self.sourcebox):

 d = self.source.recv(self.sourcebox)

 self.sink.send(d, self.sinkbox)

#

Some sample code using the mini component

system defined above

#

class Producer(component):

 def __init__(self, message):

 super(Producer, self).__init__()

 self.message = message

 def main(self):

 while 1:

 yield 1

 self.send(self.message, "outbox")

class Consumer(component):

 def main(self):

 count = 0

 while 1:

 yield 1

 count += 1 # This is to show our data is changing :-)

 if self.dataReady("inbox"):

 data = self.recv("inbox")

 print data, count

p = Producer("Hello World")

c = Consumer()

postie = postman(p, "outbox", c, "inbox")

myscheduler = scheduler()

myscheduler.activateMicroprocess(p)

myscheduler.activateMicroprocess(c)

myscheduler.activateMicroprocess(postie)

for _ in myscheduler.main():

 pass

18 Kamaelia

3. Axon & Kamaelia – Deep Dive

Having looked at how you build your own mini-Axon, which gives an idea of what's going on

underneath the hood, let's review Axon proper. As you might expect there are a number of

extra facilities and structural differences in practice in order to handle things like threads,

optimisations, efficient message passing, not hogging CPU, advertising services inside an

application, and so on, but fundamentally the basics remain the same.

As with any system, the internals of Axon are likely to continue to evolve and improve with

time, with a focus on simplicity, flexibility, and performance. However, components created

with Axon today will continue to work with Axon tomorrow.

This section will not seek to replace Axon's documentation which can be found here:

• http://www.kamaelia.org/Docs/Axon/Axon

But is intended to serve as a guide to the more important parts of Axon from the

perspective of a developer using Kamaelia. We'll cover components, and container

components (which form systems), and work out from there.

Nor is it intended to resplace Kamaelia's component documentation, which can be found

here:

• http://www.kamaelia.org/Components

But this section intended to give you signposts to some of the components which are

commonly used in many Kamaelia systems and applications. After doing this, it should be

noted that one of the best ways to learn how to write Kamaelia systems and components is

to examine existing components to see how they work. As a result, this section also does

deep dives through a handful of components as a guide.

Also note, the components in the main repository, except those in the Kamaelia.Apps

namespace, tend to contain large amounts of documentation about how they work, why they

work a certain way, and so forth.

The Kamaelia Cookbook is a growing collection of examples, of small systems and growing

tutorials as to “what next”. That can be found here:

• http://www.kamaelia.org/Cookbook

A Tutorial Overview 19

3.1 Components

As has been mentioned, components are the core of any Kamaelia system.

A rather extreme form of component definition can look something like this:

class TaggedTracer(Axon.Component.component):

 Inboxes = {

 "inbox" : "Data to display",

 "control" : "Any message sent here causes this component to shutdown",

 }

 Outboxes = {

 "outbox" : "Data is passed here unchanged",

 "signal" : "Messages passed to our control inbox are forwarded here",

 }

 def __init__(self, tag="> ", **argd):

 super(TaggedTracer, self).__init__(**argd)

 self.tag = tag

 def main(self):

 while not self.dataReady("control"):

 while self.dataReady("inbox"):

 msg = self.recv("inbox")

 print self.tag, str(msg)

 self.send(msg, "outbox")

 if not self.anyReady():

 self.pause()

 yield 1

 self.send(self.recv("control"), "signal")

This is rather over the top for a simple component, and there is a simpler form, which we'll

come back to.

However, this explicit form is useful for explaining what's happening here. There are clearly

some things here which are:

• Definition

• Configuration

• Code - the main loop, with:

• Handling of control messages

• Handling of data messages

Let's look at these, and then delve inside, and see how this maps to Mini-Axon. Then we'll

take a look at some syntactic sugar that simplifies this.

After that we'll look at a container component, and how linkages are made enabling data to

slow between components, and why container components are useful.

20 Kamaelia

3.1.1 Component Definition

These parts define the inboxes and outboxes the component expects to exist:

class TaggedTracer(Axon.Component.component):

 Inboxes = {

 "inbox" : "Data to display",

 "control" : "Any message sent here causes this component to shutdown",

 }

 Outboxes = {

 "outbox" : "Data is passed here unchanged",

 "signal" : "Messages passed to our control inbox are forwarded here",

 }

The actual inboxes and outboxes are created by Axon.Component.component.__init__ . Since this

TaggedTracer component has an __init__ method, the way it calls component's __init__ method

is as follows:

super(TaggedTracer, self).__init__(**argd)

Thus, simply defining our interface declaratively ensures our component has the right

interface for the problem in hand.

3.1.2 Simple Component Configuration

Like many python classes, this component takes some arguments to its __init__ initialiser

and uses those directly to configure the component.

class TaggedTracer(Axon.Component.component):

 ...

 def __init__(self, tag="> ", **argd):

 super(TaggedTracer, self).__init__(**argd)

 self.tag = tag

In this case it sets an attribute self.tag. This is pretty normal stuff, with a call like

TaggerTracer(tag="Checking this") setting self.tag to "Checking this".

With Kamaelia components, in the initialiser __init__ it is extremely unusual to do anything

other than copy these values into attributes in the object. As a result there is a more

compact form for handling this common pattern, which we will come back to when we look

at some syntactic sugar. However, like all syntactic sugar, its use is optional and depends

on what you want to do.

3.1.3 Component Runtime

In order to run the component, the component has 2 special methods - .activate() and

.run(). They perform the following two tasks.

• .activate() activates the component and sets it running, if the scheduler is running.

Internally, with generator components it calls the main() method, and stores a copy

of that generator, allowing the scheduler to give it CPU time. The component is

then added to the schedulers run queue. If the scheduler is running, then the

component will start running, otherwise It will wait for the scheduler to start up.

A Tutorial Overview 21

• .run() also activates the component, but also runs the scheduler.

As a result, from a user perspective, .activate() is a call that returns immediately, whereas

.run() only exits when the scheduler finishes. It is therefore common to create a collection

of components and call .activate() on them and finish by calling .run() on the last one.

You can see this behaviour in the Radio 1 example:

Backplane("Radio").activate()

Pipeline(

 DVB_Multipex(850.16, [6210], feparams), # RADIO ONE

 PublishTo("Radio"),

).activate()

def radio(*argv, **argd):

 return SubscribeTo("Radio")

ServerCore(protocol=radio, port=1600).run()

From then on, the logic of what's happening with the inboxes, outboxes, and so in is very

explicit:

def main(self):

 while not self.dataReady("control"):

 while self.dataReady("inbox"):

 msg = self.recv("inbox")

 print self.tag, str(msg)

 self.send(msg, "outbox")

 if not self.anyReady():

 self.pause()

 yield 1

 self.send(self.recv("control"), "signal")

Specifically, this loops until any single message is received on the component's control

inbox that message is forwarded to the component's signal outbox before exiting.

Inside the loop, 3 things happen:

• The system performs some actions based on messages arriving on the main inbox
inbox

• Then if there's no messages waiting on any inbox, it sets a pause flag, by calling
self.pause()

• It then releases control back to the scheduler using yield 1

The actions on the main inbox are:

• While there are messages to be processed, grab them one at a time

• print them, preceded by the tag the user gave us

• pass the message on to the next component.

This is all made very explicit in this notation. Before we come back to the slightly more

compact way of representing this, let's look inside this component and see what's going on.

22 Kamaelia

3.1.4 Delving Inside Components

Recalling this definition, what actually happens?

class TaggedTracer(Axon.Component.component):

 Inboxes = {

 "inbox" : "Data to display",

 "control" : "Any message sent here causes this component to shutdown",

 }

 Outboxes = {

 "outbox" : "Data is passed here unchanged",

 "signal" : "Messages passed to our control inbox are forwarded here",

 }

During initialisation, we ensure that Axon.Component.component.__init__ is called. Inside

there, it uses these definitions of Inboxes and Outboxes to instantiate the actual inboxes

and outboxes which are used for communications. How this happens actually depends on

the component type.

Inside normal, generator components, this happens:

from Box import makeInbox,makeOutbox

...

class component(microprocess):

...

 def __init__(self, *args, **argd):

 super(component, self).__init__()

 self.__dict__.update(argd)

 self.inboxes = dict()

 self.outboxes = dict()

 for boxname in self.Inboxes:

 self.inboxes[boxname] = makeInbox(notify=self.unpause)

 for boxname in self.Outboxes:

 self.outboxes[boxname] = makeOutbox(notify=self.unpause)

Looking at this, it clearly creates the actual inboxes & outboxes to based on the user's

definition.

By using a dict we gain the opportunity to document the usage on the inboxes & outboxes in

a useful location. In fact, it actually just iterates through the Inboxes and Outboxes

definition, so you could just use a list if you like. We'll come back to "Box", but essentially

that's implemented as a list - in the same way as mini-axon.

Digging into Axon.Component, you'll find that self.recv & self.send are implemented as follows:

def send(self,message, boxname="outbox"):

 self.outboxes[boxname].append(message)

 def recv(self,boxname="inbox"):

 return self.inboxes[boxname].pop(0)

Again, exactly as with Mini-Axon. Note that main() is a generator.

A Tutorial Overview 23

If this had been a threaded component, what's essentially different? Well, if we look at how

the initialiser for threaded component:

import Queue

...

class threadedcomponent(Component.component):

...

 def __init__(self,queuelengths=DefaultQueueSize, **argd):

 super(threadedcomponent,self).__init__(**argd)

 ...

 self.queuelengths = queuelengths

 self.inqueues = dict()

 self.outqueues = dict()

 for box in self.inboxes.iterkeys():

 self.inqueues[box] = Queue.Queue(self.queuelengths)

 for box in self.outboxes.iterkeys():

 self.outqueues[box] = Queue.Queue(self.queuelengths)

We can see that Axon.Component.component.__init__ is still called. This means that

threadedcomponents still have the same inboxes and outboxes as generator components. This

enables them to talk to generator components cleanly. However the set of inboxes &

outboxes is also used to create a collection of inqueues and outqueues.

The reason for this is because threadedcomponent is essentially a wrapper around a thread, in

the same way component is a wrapper around generator.

This means self.recv & self.send – need to work differently, due to threading issues:

def recv(self,boxname="inbox"):

 Component.component.unpause(self)

 return self.inqueues[boxname].get()

def send(self,message, boxname="outbox"):

 try:

 self.outqueues[boxname].put_nowait(message)

 Component.component.unpause(self)

 except Queue.Full:

 raise noSpaceInBox(self.outqueues[boxname].qsize(), self.queuelengths)

That said, ignoring the optimisation aspects (pausing), essentially this boils down to the

same logic as before, except using threadsafe Queues rather than lists (the movement of data

between the in/out-boxes and in/out-queues is handled by the generator part of the

component, to maintain safety).

3.2 Syntactic Sugar For Components

Revisiting configuration – Inheritable Defaults

Buried above is this line:

class component(microprocess):

...

 def __init__(self, *args, **argd):

 super(component, self).__init__()

 self.__dict__.update(argd)

24 Kamaelia

Let's examine what this does, on the console, with a slightly simplified version:

>>> class component(object):

... def __init__(self, **argd):

... self.__dict__.update(argd)

...

>>> X=component(greeting="hello world", location="screen")

>>> X.greeting

'hello world'

>>> X.location

'screen'

Clearly this enables automation of this sort of code:

class component(object):

 def __init__(self, greeting=None, location=None):

 self.greeting = greeting

 self.location = location

Similarly, when python looks up the values for self.greeting & self.location, it also looks in

the class, as well as the object. So we could also do this:

>>> class mycomponent(object):

... greeting = "Game Over"

... location = "Games console"

...

>>> T=mycomponent()

>>> T.greeting

'Game Over'

>>> T.location

'Games console'

By combining these two facts, we gain something rather special:

>>> class mycomponent(component):

... greeting = "Game Over"

... location = "Games console"

...

>>> X=mycomponent()

>>> X.greeting, X.location

('Game Over', 'Games console')

>>> X=mycomponent(greeting="Hello World", location="display")

>>> X.greeting, X.location

('Hello World', 'display')

>>> class new_mycomponent(mycomponent):

... location = "debug"

...

>>> X=new_mycomponent()

>>> X.greeting, X.location

('Game Over', 'debug')

Specifically, we gain a way to inherit the default values of the parent class, as well as a way

of populating attributes in the object.

A Tutorial Overview 25

As a result, since this construct...

class SomeComponent(component):

 def __init__(self,foo=None, bar=None, baz=None, Bla=None):

 super(SomeComponent, self).__init__()

 self.foo = foo

 self.bar = bar

 self.baz = baz

 self.bla = bla

... is so common, we tend to use this "inheritable default values" approach more and more

in real world systems.

In the introduction for example, we saw this:

def greeter(*argv, **argd):

 return PureTransformer(lambda x: "hello" + x)

class GreeterServer(ServerCore):

 protocol = greeter

 port = 1601

GreeterServer().run()

This is explicitly making use of this approach. This could be also written like this:

class GreeterServer(ServerCore):

 protocol = greeter

 port = 1601

 def protocol(*argd, **argd):

 return PureTransformer(lambda x: "hello" + x)

GreeterServer().run()

Alternatively, this can be written as follows:

ServerCore(protocol = greeter, port=1601).run()

Default Inboxes & Outboxes

If a component class is defined without an explicit Inboxes and Outboxes definition, then the

component is given the default set. Specifically inboxes: "inbox", "control" and outboxes

"outbox", "signal"

Iterating Inboxes

Again, this code structure is relatively common:

while self.dataReady("someinbox"):

 msg = self.recv("someinbox")

 <do something>

As a result, this iteration pattern has the following syntactic sugar:

for msg in self.Inbox("someinbox"):

 <do something>

26 Kamaelia

Bringing it all together

Given all this, we can rewrite the component under discussion as follows:

class TaggedTracer(Axon.Component.component):

 tag = "> "

 def main(self):

 while not self.dataReady("control"):

 for msg in self.Inbox("inbox"):

 print self.tag, str(msg)

 self.send(msg, "outbox")

 self.pause()

 yield 1

 self.send(self.recv("control"), "signal")

At present this is the best practice form for many components.

This has the same behaviour as before - you can still type TaggedTracer(tag="my tag"), and

self.tag inside is customised in that way. Unlike before however, if you use a particular form

of tracer, you can do this instead:

class DebugTracer(TaggedTracer):

 tag = "debug> "

class WarnTracer(TaggedTracer):

 tag = "warn> "

class ErrorTracer(TaggedTracer):

 tag = "error> "

You could also use a factory function instead, but this form enables the user of your

component to override it and reuse it in ways you may not expect.

Syntactic Sugar for Control Handling?

At present it's becoming rapidly apparent that this structure in itself is a common form:

class SomeComponentName(Axon.Component.component):

 def main(self):

 while not self.dataReady("control"):

 * generator body *

 self.send(self.recv("control"), "signal")

And it's tempting to consider writing a decorator that would be used like this...

@GeneratorComponent(Inboxes = ["inbox", "control"],

 Outboxes = ["outbox", "signal"])

def Tracer(self):

 while 1:

 for msg in self.Inbox("inbox"):

 print self.tag, str(msg)

 self.send(msg, "outbox")

 self.pause()

 yield 1

... and to use PEP 342 facilities to shutdown this sort of generator component. Whether

this makes sense is currently a matter under discussion, you're welcome to join in!

A Tutorial Overview 27

3.3 Building Components

This fact that generator components and threaded components have the same API provdes

us with a way of making components relatively simply. On the Kamaelia website there's an

example of how a MulticastTransceiver can be written. For this case, we'll look at how to build

a component for working with the new pygame.camera API (due in 1.9 release).

In order to do this, let's review how to use pygame.camera API.

First we pull in the necessary

imports, and initialisation.

import pygame

import pygame.camera

pygame.init()

pygame.camera.init()

We define some values we'll use Displaysize = (800, 600)

capturesize = (640, 480)

imagesize = (352,288)

imageorigin = (0,0)

device = "/dev/video0"

Initialise the display, allocate a

camera and activate it.

display = pygame.display.set_mode(displaysize)

camera = X=pygame.camera.Camera(device, capturesize)

camera.start()

Then loop round capturing images,

resizing them as necessary, blit to

the display and flip.

while 1:

 snapshot = camera.get_image()

 snapshot = pygame.transform.scale(snapshot, imagesize)

 display.blit(snapshot, imageorigin)

 pygame.display.flip()

And when you run it, you get to see whatever the camera is pointed at:

28 Kamaelia

So far so good. Before we componentise this, let's transform this into a normal python

class which makes it easier to work with.

The key benefit this process gives you of course is reuse & customisation.

As before, necessary

imports and initialisation

import pygame

import pygame.camera

pygame.init()

pygame.camera.init()

The class... class VideoCapturePlayer(object):

We can store our

configuration in class

attributes. These form

defaults.

 displaysize = (800, 600)

 capturesize = (640, 480)

 imagesize = (352,288)

 imageorigin = (0,0)

 device = "/dev/video0"

In the constructor, allow the

user to override the

defaults.

 def __init__(self, **argd):

 self.__dict__.update(**argd)

 super(VideoCapturePlayer, self).__init__(**argd)

As before, initialise the

display, allocate a camera

and activate it.

 self.display = pygame.display.set_mode(self.displaysize)

 self.camera = X=pygame.camera.Camera(self.device,

 self.capturesize)

 self.camera.start()

Wrap up the body of the

loop in a method, largely

unchanged.

 def get_and_flip(self):

 snapshot = self.camera.get_image()

 snapshot = pygame.transform.scale(snapshot,self.imagesize)

 self.display.blit(snapshot, self.imageorigin)

 pygame.display.flip()

Then provide a method for

the user to call

 def main(self):

 while 1:

 self.get_and_flip()

Finally, instantiate this and

run it. VideoCapturePlayer().main()

To use this in a Kamaelia system we could go through the following steps:

• Convert it to a threaded component

• We'd then want to seperate out capture from display

A Tutorial Overview 29

• This would then allow the WebCam code to be used with other pygame

components, and allow us to use it as a source for other purposes – for example

recording images (eg stop motion) or across the network.

Conversion to a threaded component is the first obvious step, so let's do that.

As before, necessary

imports and initialisation.

We've added in one import.

import pygame

import pygame.camera

pygame.init()

pygame.camera.init()

From Axon.ThreadedComponent import threadedcomponent

Change the baseclass class VideoCapturePlayer(threadedcomponent):

Same config options displaysize = (800, 600)

 capturesize = (640, 480)

 imagesize = (352,288)

 imageorigin = (0,0)

 device = "/dev/video0"

As before, still the user can

still override defaults.

 def __init__(self, **argd):

 super(VideoCapturePlayer, self).__init__(**argd)

As before initialise the

display, allocate camera

and activate it.

 self.display = pygame.display.set_mode(self.displaysize)

 self.camera = pygame.camera.Camera("/dev/video0",

 self.capturesize)

 self.camera.start()

We've added this wrapper

function.

 def pygame_display_flip(self):

 pygame.display.flip()

As before same logic for

the body of the loop. Only

change is to call our

wrapper around .flip()

 def get_and_flip(self):

 snapshot = self.camera.get_image()

 snapshot = pygame.transform.scale(snapshot,self.imagesize)

 self.display.blit(snapshot, self.imageorigin)

 self.pygame_display_flip()

The main method is

unchanged.

 def main(self):

 while 1:

 self.get_and_flip()

And finally run as before.
VideoCapturePlayer().main()

From this, it should be clear that making threaded components are relatively painless.

Indeed, this sort of change is relatively common – at least initially. Specifically, get a version

of the code you want to use running, and then componentise it and evolve it towards where

you want it to go.

The next step is to seperate out capture form display.

30 Kamaelia

First the resulting webcam capture component.

class VideoCaptureSource(Axon.ThreadedComponent.threadedcomponent):

 capturesize = (640, 480)

 delay = 0

 fps = -1

 def __init__(self, **argd):

 super(VideoCaptureSource, self).__init__(**argd)

 self.camera = pygame.camera.Camera("/dev/video0", self.capturesize)

 self.camera.start()

 if self.fps != -1:

 self.delay = 1.0/self.fps # fps overrides delay

 def capture_one(self):

 snapshot = self.camera.get_image()

 return snapshot

 def main(self):

 while 1:

 self.send(self.capture_one(), "outbox")

 time.sleep(self.delay)

There's a handful of changes here:

• It doesn't touch the display, simply sending images out our main outbox.

• A delay between taking images has been added, since the rate of image capture is

no longer limited by render speed.

It's worth noting that this component is now more useful, even though it's shorter.

On the flip side, separating out the display elements looks like this:

class SurfaceDisplayer(Axon.Component.component):

 displaysize = (800, 600)

 def __init__(self, **argd):

 super(SurfaceDisplayer, self).__init__(**argd)

 self.display = pygame.display.set_mode(self.displaysize)

 def pygame_display_flip(self):

 pygame.display.flip()

 def main(self):

 while 1:

 while self.dataReady("inbox"):

 snapshot = self.recv("inbox")

 self.display.blit(snapshot, (80,60))

 self.pygame_display_flip()

 while not self.anyReady():

 self.pause()

 yield 1

 yield 1

Usage of these two then looks like this:

from Kamaelia.Chassis.Pipeline import Pipeline

Pipeline(

 VideoCaptureSource(),

 SurfaceDisplayer()

).run()

A Tutorial Overview 31

Similarly this video capture component can also be used to save images to disk.

For example, if instead of the image displayer, we create a component for saving the images

to disk? Such a component could look like this:

class LossyPicSaver(Axon.Component.component):

 base = "vid/"

 def main(self):

 base = self.base

 while 1:

 snapshot = None

 for snapshot in self.Inbox("inbox"):

 pass

 if snapshot:

 filename = base + str(self.scheduler.time)+".jpg"

 pygame.image.save(snapshot, filename)

 while not self.anyReady():

 self.pause()

 yield 1

 yield 1

Again this follows the same structure, expecting images on the main “inbox”, but has a

couple of oddities:

• Picking the smaller first, it does this: str(self.scheduler.time)

The reason for this is because the scheduler already has the time representing this

timeslice, so we may as well just use it. (This is the reason this attribute exists)

• It also has the following construct:

 snapshot = None

 for snapshot in self.Inbox("inbox"):

 pass

 if snapshot:

The reason for this is because saving images to disk obviously takes time. If we

want to keep pace with the speed at which we're likely to receive them, we want to

throw away images we're not going to have time to save (without incurring a

memory leak). It's due to this, that I called this a lossy picture saver.

Usage of this is as follows:

 Pipeline(

 VideoCapturePlayer(),

 LossyPicSaver(base="vid/"),

).run()

3.3.1 Katas

Rather than specific exercises here, 2 Kata's which are appropriate are this:

• Find example stubs for your favourite library, and wrapping them to form

components, eg audio capture, Lego NXT components, etc

• Taking these components and connecting them together using pipeline or

Graphline (For example an audio recorder, stop motion animation capture).

32 Kamaelia

3.4 Components Core to Systems

Having covered components in some detail, it should be apparent that components can be

relatively complex – such as a complete webcam viewing application. However by making

simpler components we are able to recombine them in interesting and more flexible ways.

We've already seen that you can use Pipeline to combine components, but let's examine

systems in more detail – both in higher level terms and all the way down to the bottom

The following higher level mechanisms are most useful today for building systems:

Kamaelia.Chassis:

• Pipeline – causes data & signals to flow from one component to the next in the

pipeline.

• Graphline – causes data & signals to flow in a user customised form (more

verbose, more flexible)

• Seq – Looks like a pipeline, but slightly different. It activates each subcomponent

one after another, replumbing the external in/out-boxes to the newly active

subcomponent as they go. We'll come back to how this is useful.

• PAR – this component runs all the subcomponents in parallel, combining their

output into one destination.

• ServerCore – this takes a factory method for new

Kamaelia.Util:

• PureTransformer – whilst this component doesn't contain a component, it is

generally only useful when supplied with a transformation function. As a result, it

can be viewed as a function chassis, as opposed to a component chassis.

• Backplane, SubscribeTo, PublishTo – these components used together provide a

mechanism for creating named services that can be easily plumbed into the rest of

the system.

3.5 Pipelines

Pipelines are amongst the most widely used component that we've seen so far, so let's

examine them in slightly more detail.

The Kamaelia ER Modeller is a useful example here. It was a tool written in an afternoon,

including the components, created for the purpose making it easy to play with a textual

database definition and to automatically lay out what it looks like. The purpose behind this

was to enable “playing” with the a particular data model at a high level, and allowing

Kamaelia to handle the layout.

This was quick and simple to do because Kamaelia provides a topology visualisation tool,

which creates a dynamic layout based on a simple physics model.

A Tutorial Overview 33

Specifically, it allows you to type this: And Kamaelia renders this:

entity missionagent

entity person(missionagent)

entity team(missionagent)

entity missionitem:

 simpleattributes visible

entity activemission

relation

participatesin(activemission,missionagent)

relation creates(missionagent,missionitem)

The full code for the main file – Modeller.py & diagram – is this

import sys

from Kamaelia.Util.Backplane import *

from Kamaelia.Util.Console import *

from Kamaelia.Chassis.Pipeline import Pipeline

from Kamaelia.Visualisation.PhysicsGraph.TopologyViewer import TopologyViewer

from Kamaelia.Visualisation.PhysicsGraph.lines_to_tokenlists import lines_to_tokenlists

from Kamaelia.File.ReadFileAdaptor import ReadFileAdaptor

from Kamaelia.Visualisation.ER.ERVisualiserServer import ERVisualiser

from Kamaelia.Experimental.ERParsing import ERParser,ERModel2Visualiser

Backplane("TOPOLOGY").activate()

Pipeline(

 ConsoleReader(">>> "),

 PublishTo("TOPOLOGY"),

).activate()

if len(sys.argv)> 1:

 Pipeline(

 ReadFileAdaptor(sys.argv[1]),

 ERParser(),

 ERModel2Visualiser(),

 PublishTo("TOPOLOGY"),

).activate()

Pipeline(

 SubscribeTo("TOPOLOGY"),

 lines_to_tokenlists(),

 ERVisualiser(screensize = (1024,768), fullscreen = True),

 ConsoleEchoer(),

).run()

34 Kamaelia

Backplane(“TOPOLOGY”)

Pipeline
Console Reader

PublishTo(“TOPOLOGY”)

Pipeline
FileReader

PublishTo(“TOPOLOGY”)

ERParser

ERModel2Visualiser

Pipeline
ConsoleEchoer

SubscribeTo(“TOPOLOGY”)

ERVisualiser

lines_to_tokenlists

3.5.1 Deep dive inside pipelines, linkages, sub components

I'm not going to go through the ER modeller code in detail, but rather focus on one part of it,

specifically this pipeline:

Pipeline(

 SubscribeTo("TOPOLOGY"),

 lines_to_tokenlists(),

 ERVisualiser(screensize = (1024,768), fullscreen = True),

 ConsoleEchoer(),

).run()

Internal Links

Now in order for this to work, the Pipeline component links the outputs of these components

to each other:

As you can see Pipeline creates linkages between components inside it – these collapse

the outboxes into inboxes, ensuring direct delivery of messages from on component to the

next.

The code that does this looks like this:

 def __init__(self, *components, **argv):

....

 self.components = list(components)

...

 def main(self):

...

 Pipeline = self.components[:]

 source = Pipeline[0]

 del Pipeline[0]

 while len(Pipeline)>0:

 dest = Pipeline[0]

 del Pipeline[0]

 self.link((source,"outbox"), (dest,"inbox"))

 self.link((source,"signal"), (dest,"control"))

 source = dest

That's a little obfuscated to make this more general, so lets give the components some real

names, and trace out the .link() calls made:

SUB = SubscribeTo("TOPOLOGY"),

LINES = lines_to_tokenlists(),

VIS = ERVisualiser(screensize = (1024,768), fullscreen = True),

CONSOLE = ConsoleEchoer(),

A Tutorial Overview 35

SubscribeTo
outbox

signalcontrol

inbox Lines to

tokenlist

outbox

signalcontrol

inbox ER

Visualiser

outbox

signalcontrol

inbox Console

Echoer

outbox

signalcontrol

inbox

The first set of .link calls made, therefore look like this:

self.link((SUB,"outbox"), (LINES,"inbox"))

self.link((SUB,"signal"), (LINES,"control"))

self.link((LINES,"outbox"), (VIS,"inbox"))

self.link((LINES,"signal"), (VIS,"control"))

self.link((VIS,"outbox"), (CONSOLE,"inbox"))

self.link((VIS,"signal"), (CONSOLE,"control"))

Clearly self.link makes the linkages described, but what does that mean here? Well, it

means that the method component.link gets called:

def link(self, source,sink,*optionalargs, **kwoptionalargs):

 return self.postoffice.link(source, sink, *optionalargs, **kwoptionalargs)

This is clearly a proxy method for the component's local postoffice.

What's a postoffice? Well, unlike mini-axon which has an actual microprocess handling

deliveries, we collapse outboxes into inboxes, meaning delivery happens immediately. The

postoffice's purpose revolves around tracking what links are created and destroyed.

So in order to find out what's going on we dive inside postoffice.link, and find:

 def link(self, source, sink, *optionalargs, **kwoptionalargs):

 (sourcecomp, sourcebox) = source

 (sinkcomp, sinkbox) = sink

 thelink = linkage(sourcecomp,sinkcomp,sourcebox,sinkbox,*optionalargs,**kwoptionalargs)

 try:

 thelink.getSinkbox().addsource(thelink.getSourcebox())

 except BoxAlreadyLinkedToDestination, e:

 raise e

 self.linkages.append(thelink)

 return thelink

So this extracts the specific source component/boxname & sink component/boxname. It

then calls linkage – creating a linkage object – using this information, along with any

optionalargs and any kwoptionalargs.

The next step is to collapse the collapse the two box's storage into one. This is done by the

addsource method call.

Assuming that works, the postoffice stores a copy of the linkage locally, and returns a copy

back to the user. This enables a user to say .unlink() at a later point in time, and to break

the linkage – perhaps to point an outbox or inbox in a different direction.

Note: until an outbox is linked to an inbox, it doesn't actually have any storage space, and

once it is, an outbox is effectively a proxy to the storage for an inbox.

A key result of this, indeed the point of this, is sending a message to an outbox means that

it is instantly delivered to the recipient without copying. This is safe for generator

components because only one generator is active at any point in time.

36 Kamaelia

External To Internal Interface

Now that we've dealt with the links inside the Pipeline component, we clearly want the

following circumstance to be efficient as well.

For this to work as you'd expect, we need to examine what happens inside a Pipeline

component at, at the edges. If you do, you'll find that the links look like this:

The sorts of linkages – inbox to inbox and outbox to outbox – are termed passthrough

linkages. If you make a passthrough linkage, you are explicitly saying “I'm not going to touch

these – I won't get in the way of the conversation between the outside component talking to

my subcomponent”.

In Pipeline the way this link is (generally) made is as follows:

self.link((self,"inbox"), (self.components[0],"inbox"), passthrough=1)

self.link((self,"control"), (self.components[0],"control"), passthrough=1)

self.link((self.components[-1],"outbox"), (self,"outbox"), passthrough=2)

self.link((self.components[-1],"signal"), (self,"signal"), passthrough=2)

This ends up being passed all the way down to the linkage class which uses the passthrough

number to determine that it's OK to link an inbox to an inbox and an outbox to an outbox.

This is for practical reasons – since we do have the logical distinction between inboxes and

outboxes, and for safety reasons. Doing thi reduces the chances of accidentally linking an

inbox to an inbox and outbox to outbox.

The reason the comment above says generally, is because whilst the majority of pipelines

are simple linear “stuff comes in one end, stuff comes out the other” affairs, it is

occasionally useful to feed the output of the pipeline back into the front.

If you need to do this, you would make a call like this:

Pipeline(ComponentOne(), ComponentTwo(), circular=True)

Then the output of ComponentTwo also becomes the source for ComponentOne.

Managing shutdown

A Pipeline component is a Chassis component – a component that requires subcomponents

to be active for it to make sense. Given that it uses passthrough linkages for all inboxes

and outboxes, how does it know when the children have exitted ?

A Tutorial Overview 37

Pipeline
outbox

signalcontrol

inbox
Pipeline

outbox

signalcontrol

inbox
Pipeline

outbox

signalcontrol

inbox
Pipeline

outbox

signalcontrol

inbox

control

inbox
SubscribeTo

outbox

signalcontrol

inbox outbox

signal

Console

Echoer

outbox

signalcontrol

inbox. . .

Well, this is where the concept of child components comes in. A child component “lives

inside” another component, and that parent component gets notification when a sub

component shutsdown. Ie if the component was .paused() – sleeping until awoken by an

event from the scheduler.

The part of Pipeline that manages this is this:

 def __init__(self, *components, **argv):
...

 self.components = list(components)
...

 def main(self):

 self.addChildren(*self.components)
...

 for child in self.children:

 child.activate()

 while not self.childrenDone():

 self.pause()

 yield 1

 def childrenDone(self):

 for child in self.childComponents():

 if child._isStopped():

 self.removeChild(child) # deregisters linkages for us

 return 0==len(self.childComponents())

As a result, what we see is exactly what you expect:

• Pipeline adds the provided components as children

• Pipeline then activates them, after having created all the links

• Then it enters a loop where it knows it will be awoken when a child component

exits.

• Its condition for exiting that loop is when all the child components have exited. It

does this by calling the ._isStopped() method to determine this. Exited children are

then removed using removeChild. This de-registers linkages involving this component

and breaks those linkages (via .unlink()) as well.

As you might expect, the following components operate in effectively a similar way to

Pipeline internally with their own unique foibles: Graphline, Seq & PAR.

Clearly any component can call .link() and therefore all components can be container

components of varying specialisation. When you do so, rather than using Pipeline,

Graphline, Seq, or PAR, then this section should be a useful guide.

Syntactic Sugar

From all this, it should be clear that Pipeline, Graphline, Seq, PAR, and indeed Carousel, are

themselves syntactic sugar. As a result, rather than supply syntactic sugar inside Axon,

these components themselves provide that functionality.

As a result, let's examine some examples of using them.

38 Kamaelia

3.5.2 Using Pipelines

As we've seen, pipelines can be used to link a collection of components together to form a

system.

Example Pipelines

A pygame based graphical python interpreter:

from Kamaelia.Chassis.Pipeline import Pipeline

from Kamaelia.UI.Pygame.Text import Textbox from

Kamaelia.UI.Pygame.Text import TextDisplayer

from Kamaelia.Experimental.PythonInterpreter

import InterpreterTransformer

Pipeline(

 Textbox(size = (800, 300),

 position = (100,380)),

 InterpreterTransformer(),

 TextDisplayer(size = (800, 300),

 position = (100,40)),

).run()

Clearly this links together 3 components, one handling reading from the user, another

displaying to the user and another to interpret any commands given.

Building something more complex, we can create a tool that steps through some rules that

describe a topology, which updates when we click a button. A topology slideshow – example:

For this we need a set of instructions, a button to hit, something that when it gets a

message that emits one of these instructions & the topology viewer. Since the topology

viewer expects pre-parsed instructions, we need something to tokenise the instructions (the

topology viewer code includes such a tokeniser).

So we start with out imports:

from Kamaelia.UI.Pygame.Button import Button

from Kamaelia.Util.Chooser import Chooser

from Kamaelia.Visualisation.PhysicsGraph.lines_to_tokenlists import lines_to_tokenlists

from Kamaelia.Visualisation.PhysicsGraph.TopologyViewer import TopologyViewer

from Kamaelia.Chassis.Pipeline import Pipeline

A Tutorial Overview 39

We then create a list of instructions to step through:

graph = """\

ADD NODE TCPClient TCPClient auto -

ADD NODE VorbisDecode VorbisDecode auto -

ADD NODE AOPlayer AOPlayer auto -

ADD LINK TCPClient VorbisDecode

ADD LINK VorbisDecode AOPlayer

ADD NODE Multicast_Transceiver Multicast_Transceiver auto -

ADD NODE detuple detuple auto -

ADD LINK Multicast_Transceiver detuple

DEL NODE TCPClient

ADD LINK detuple VorbisDecode

DEL ALL

""".split("\n")

Finally we build the pipeline:

Pipeline(

 Button(caption="Next", msg="NEXT", position=(72,8)),

 Chooser(items = graph),

 lines_to_tokenlists(),

 TopologyViewer(transparency = (255,255,255), showGrid = False),

).run()

A recent example system which I used at work for a project in the past year was a system

that accepted SMS messages from a user. These ended up being placed into a directory for

processing – since the SMS provider forwarded the SMS messages over http.

These would be read, processed, and depending on user input, the user would get a

response. The core of this part of the system was this:

from Kamaelia.Chassis.Pipeline import Pipeline

from Kamaelia.Apps.Facilitate.SMSFileParser import SMSFileParser

from Kamaelia.Apps.Facilitate.SMSProcesser import SMSProcesser

from Kamaelia.Apps.Facilitate.SMSSender import SMSSender

from Kamaelia.Util.Console import ConsoleEchoer

Pipeline(

 DirectoryWatcher(watch = "/srv/www/sites/www.bickermanor.org/cgi/app/incomingsms"),

 SMSFileParser(),

 SMSProcesser(),

 SMSSender(),

 ConsoleEchoer(),

).activate()

Incidentally, this code is likely to be available by Europython. The reason for the

ConsoleEchoer on the ends was to trace the system was sending messages.

Similarly, another part of that same system needed to accept user images uploaded, and

convert them to a variety of sizes, and transcode any videos uploaded to SWF format for

playback on the web. They then needed to be placed into a moderation queue before being

made visible. Like the SMS system, the web front end would place content into an incoming

directory, and the first step of the system was to sort that content.

40 Kamaelia

As a result, the core of this system – Kamaelia-FileProcessor in the release directory – is

actually 4 pipelines:

• One to sort images from a main incoming directory

• One to sort videos from a main incoming directory

• One to pass filenames to an image converter component, which the converted the

images.

• One to pass filenames to an video transcoder component, which the converted the

images.

The core of that looks relatively simple:

Pipeline(

 DirectoryWatcher(watch = conf["main_incoming_queue"]),

 ImageMover(destdir = conf["image_queue"]),

).activate()

Pipeline(

 DirectoryWatcher(watch = conf["image_queue"]),

 ImageTranscoder(destdir = conf["image_moderation_queue"]),

).activate()

Pipeline(

 DirectoryWatcher(watch = conf["main_incoming_queue"]),

 VideoMover(destdir = conf["video_queue"]),

).activate()

Pipeline(

 DirectoryWatcher(watch = conf["video_queue"]),

 VideoTranscoder(destdir = conf["video_moderation_queue"]),

).run()

Again, the reason that looks relatively simple is because it's comprised of components

which are focused on doing a single task very well, and can then be combined in interesting

ways. We also see here that we can .activate() several pipelines one after another before

choosing to .run() the last one.

 Clearly this approach would allow us

to spawn as many VideoTranscoders as

we liked to keep our CPU's busy.

Furthermore, by using a queueing

system like this, rather than on-

demand, it means that even if there's

A Tutorial Overview 41

As a result, as well as being

clearer, using concurrency

in this case also allows for

better resource planning.

3.6 Graphlines

Graphlines perform a similar role to Pipelines in Kamaelia, in that they are also container or

Chassis components. However, Graphlines are not limited to any particular set of links or

topologies. You can form whatever structures you like.

An early example of a graphline was a presentation tool, so let's examine that. In this case

it took a collection of images, had a previous/next/first/last buttons. It then had something

that could step backwards and forwards between those (a “Chooser” component) and then

something to display the chosen images.

Putting that together, we grab the imports:

import os

from Kamaelia.UI.Pygame.Button import Button

from Kamaelia.UI.Pygame.Image import Image

from Kamaelia.Util.Chooser import Chooser

from Kamaelia.Chassis.Graphline import Graphline

Then grab all the file-names from a subdirectory, which contains all the images:

path = "Slides"

extn = ".gif"

allfiles = os.listdir(path)

files = list()

for fname in allfiles:

 if fname[-len(extn):]==extn:

 files.append(os.path.join(path,fname))

files.sort()

Finally we build our graphline out of these components, define the links, and run them:

Graphline(

 NEXT = Button(caption="Next", msg="NEXT", position=(72,8)),

 PREVIOUS = Button(caption="Previous", msg="PREV",position=(8,8)),

 FIRST = Button(caption="First", msg="FIRST",position=(256,8)),

 LAST = Button(caption="Last", msg="LAST",position=(320,8)),

 CHOOSER = Chooser(items = files),

 IMAGE = Image(size=(800,600), position=(8,48)),

 linkages = {

 ("NEXT","outbox") : ("CHOOSER","inbox"),

 ("PREVIOUS","outbox") : ("CHOOSER","inbox"),

 ("FIRST","outbox") : ("CHOOSER","inbox"),

 ("LAST","outbox") : ("CHOOSER","inbox"),

 ("CHOOSER","outbox") : ("IMAGE","inbox"),

 }

).run()

42 Kamaelia

That then looks like this:

You should be able to see the 4

buttons along the top, and that the

main panel is the image display.

More generally, Graphlines tend to be used extensively in Kamaelia applications. Going back

to that SMS system I mentioned earlier, as well as responding to SMS messages the user

sent us, it was also necessary for the web system, and other parts to send SMS messages.

Again, in order to balance resources effectively, and in order to have a responsive web

system, sending SMS messages to the user was handed off to another Kamaelia system –

this one for sending.

This system needed to do the following:

• Accept sms's placed in an outgoing SMS directory

• Then the SMS would need to be read, and passed onto the sender

• Additionally it was necessary to send the message

Again, most of the components for doing this were pre-existing. (For example the

SMSSender was reused, the file mover code was reused, etc)

Graphline(

 SMS_SOURCE = Pipeline(

 DirectoryWatcher(watch = "outgoingsms"),

 FilesToProcessSource(),

 FileSlurper(tuplemode=True),

),

 CLEANER = Pipeline(

 PureTransformer(lambda (x,y): y),

 Mover(),

),

 SENDER = Pipeline(

 PureTransformer(lambda (x,y): cjson.decode(x)),

 SMSSender(),

),

 SPLIT = TwoWaySplitter(),

 linkages = {

 ("SMS_SOURCE","outbox") : ("SPLIT","inbox"),

 ("SPLIT", "outbox") : ("CLEANER", "inbox"),

 ("SPLIT", "outbox2") : ("SENDER", "inbox"),

 }

).run()

This graphline doesn't just consist of basic components- but also includes pipelines as

A Tutorial Overview 43

sources and sinks. This shows rather nicely that many real world systems that get built tend

to use Graphlines to for top level linkages & Pipelines for linking subsystems together.

Additionally there is sufficient information here for us to draw an diagram about what's going

on:

Furthermore, you can place graphlines inside pipelines, graphlines in graphlines, and so on.

3.7 Incrementally Growing Systems: Nesting Pipelines &

Graphlines

This allows you to develop gradually more complex systems, testing them along the way,

piece by piece. Put another way, this allows you to safely create and extend Kamaelia based

systems in a naturally safe manner.

For example, one application developed in this way:

• A simple scribbler application was written

• Buttons that emitted a colour spec were written and hooked into that.

• Then a simple protocol was written for recording the strokes drew, to drive the

scribbler

• Then something was written that serialised these and able to be sent over the

network. The other end was another scribbler, which could deserialise these, and

display them.

• Then this was mirrored by the other end – resulting in a whiteboard application

which could be used by 2 users in 2 locations.

• This was then generalised to any number of users.

• Then someone wrote a “speex” audio codec component, and started using the

same technique for sharing audio – meaning the people in both locations could

talk to each other as well.

• Then multiple pages were added, defaulting to saving when changing pages,

resulting in a shared, multipage notebook.

This then resulted in the creation, incrementally of whiteboard capable of being both a client

and server, mixing audio in each location. Again the core of that system is also a graphline,

44 Kamaelia

Directory

Watcher

FilesTo

ProcessSource

File

Slurper

TwoWay

Splitter

PureTransformer
...cjson.decode

SMSSender

PureTransformer
<lamda (x,y):y>

Mover

which is in Kamaelia/Tools/Whiteboard/Whiteboard.py . We'll rummage around in this in

the tutorial on the day, but to give an idea of what it looks like, we'll look at it here briefly.

As noted, we had a Canvas and something capable of Painting on it.

Graphline(CANVAS = Canvas(position=(left,top+32),size=(width,height-32)),

 PAINTER = Painter(),

Then we want some controls regarding colour, erasing & clearing:

 PALETTE = buildPalette(cols=colours, order=colours_order,

 topleft=(left+64,top), size=32),

 ERASER = Eraser(left,top),

 CLEAR = ClearPage(left+(64*5)+32*len(colours),top),

Then there's controls over pages:

 PAGINGCONTROLS = PagingControls(left+64+32*len(colours),top),

 LOCALPAGINGCONTROLS = LocalPagingControls(left+(64*6)+32*len(colours),top),

 LOCALPAGEEVENTS = LocalPageEventsFilter(),

Then there's a component regarding converting these page controls into commands which

manage the page loading/etc.

 HISTORY = CheckpointSequencer(lambda X: [["LOAD", SLIDESPEC % (X,)]],

 lambda X: [["SAVE", SLIDESPEC % (X,)]],

 lambda X: [["CLEAR"]],

 initial = 1,

 highest = num_pages,

),

Then we need to duplicate events to the canvas and the network – like earlier we can use a

two way splitter to do this:

 PAINT_SPLITTER = TwoWaySplitter(),

 LOCALEVENT_SPLITTER = TwoWaySplitter(),

 DEBUG = ConsoleEchoer(),

And finally make all the actual links:

 linkages = {

 ("CANVAS", "eventsOut") : ("PAINTER", "inbox"),

 ("PALETTE", "outbox") : ("PAINTER", "colour"),

 ("ERASER", "outbox") : ("PAINTER", "erase"),

 ("PAINTER", "outbox") : ("PAINT_SPLITTER", "inbox"),

 ("CLEAR","outbox") : ("PAINT_SPLITTER", "inbox"),

 ("PAINT_SPLITTER", "outbox") : ("CANVAS", "inbox"),

 ("PAINT_SPLITTER", "outbox2") : ("", "outbox"), # send to network

 ("LOCALPAGINGCONTROLS","outbox") : ("LOCALEVENT_SPLITTER", "inbox"),

 ("LOCALEVENT_SPLITTER", "outbox2"): ("", "outbox"), # send to network

 ("LOCALEVENT_SPLITTER", "outbox") : ("LOCALPAGEEVENTS", "inbox"),

 ("", "inbox") : ("LOCALPAGEEVENTS", "inbox"),

 ("LOCALPAGEEVENTS", "false") : ("CANVAS", "inbox"),

 ("LOCALPAGEEVENTS", "true") : ("HISTORY", "inbox"),

 ("PAGINGCONTROLS","outbox") : ("HISTORY", "inbox"),

 ("HISTORY","outbox") : ("CANVAS", "inbox"),

 ("CANVAS", "outbox") : ("", "outbox"),

 ("CANVAS","surfacechanged") : ("HISTORY", "inbox"),

 },)

A Tutorial Overview 45

Clearly, this didn't just “jump” into being in this form, and as noted this code evolved in this

way, based on a gradual accretion of functionality.

As a result, doing a deep dive through this code wouldn't make much sense, since it would

not explain why the code is this structure. Indeed in doing so it would probably point to why

it would be better to do it a different way, so we will come back to how you build up complex

systems shortly, after touching on two other Chassis components.

Furthermore by showing how systems grow and evolve, it should help should you need to do

this.

3.8 PAR Components

As we've seen, Pipeline is a component that takes a bunch of components, creates links

between then all in a predefined way and runs them all concurrently. Graphline is a

component that takes a bunch of components, and links them up based on a user

definition.

Similarly, PAR is also a component that takes a bunch of components, but unlike the

others, they are not wired up/connected together.

Specifically PAR:

• Is passed a collection of components

• It links their output to its output

• It activates them all

• And exits when they do.

This is a relatively new component, and there are plans to make it possible to define a

policy function regarding what to do with messages coming in on the standard inboxes, but

that is something that will come later.

For the moment however it enables us to rewrite some graphlines in a more direct style. For

example, these two pipeline/par & graphlines are equivalent, but one is more direct and

explicit than the other:

Graphline(

 NEXT = Button(caption="Next", msg="NEXT",

 position=(72,8)),

 PREVIOUS = Button(caption="Previous",

 msg="PREV", position=(8,8)),

 FIRST = Button(caption="First", msg="FIRST",

 position=(256,8)),

 LAST = Button(caption="Last", msg="LAST",

 position=(320,8)),

 CHOOSER = Chooser(items = files),

 IMAGE = Image(size=(800,600),

 position=(8,48)),

 Pipeline(

 PAR(

 Button(caption="Next", msg="NEXT",

 position=(72,8)),

 Button(caption="Previous",msg="PREV",

 position=(8,8)),

 Button(caption="First", msg="FIRST",

 position=(256,8)),

 Button(caption="Last", msg="LAST",

 position=(320,8)),

),

 Chooser(items = files),

 Image(size=(800,600), position=(8,48)),

).run()

46 Kamaelia

 Linkages = {

 ("NEXT","outbox") : ("CHOOSER","inbox"),

 ("PREVIOUS","outbox") : ("CHOOSER","inbox"),

 ("FIRST","outbox") : ("CHOOSER","inbox"),

 ("LAST","outbox") : ("CHOOSER","inbox"),

 ("CHOOSER","outbox") : ("IMAGE","inbox"),

 }

).run()

Clearly the version using “PAR” is more compact. Which is clearer from a maintainers

perspective probably depends on whether they know what PAR does or not, but the potential

for clarifying code through compactness like this is useful.

Specifically it is removing the apparent complexity of the linkages, and being more explicit

about what should happen with the data flow.

As noted, PAR is a relatively new component, but it is likely to be useful in simplifying many

systems.

Diagrammatically, these two are equivalent:

PAR(

 Button(msg="NEXT" ...

 Button(msg="PREV" ...

 Button(msg="FIRST" ...

 Button(msg="LAST" ...

)

An extension to come in the next few weeks will be control over the inbound wiring, through

the use of a policy function.

3.9 Seq Components

Clearly PAR allows you take a collection of components and easily set them running in

PARallel – with the output from all subcomponents all piped to one location.

Seq however, allows you to take a collection of components and easily set them running

sequentially – one after another. Ie they allow you to do this:

• Seq(RunThis(), ThenThis(), ThenThat(), AndFinallyThis())

This is useful because the inboxes and outboxes of these are rewired after each, allowing

you to pipe data through one component & then another.

A Tutorial Overview 47

outbox

signalcontrol

inbox

Button

<prev>

outbox

signalcontrol

inbox

Button

<next>

outbox

signalcontrol

inbox

Button

<first>

outbox

signalcontrol

inbox

Button

<last>

outbox

signalcontrol

inbox

This allows you to do a variety of things, but examples include :

• Sending an initial starting message before running a component which generates

output.

• The MobileReframer (in Kamaelia/Tools) uses it to divide processing of video files

up into stages. First it decodes and seperates frames, then processes some edits,

and then performs some cleanup. Each of the stages is a seperate Graphline.

• Performing authentication on a network connection before allowing a user to speak

with the main connection. We'll see how this can work later.

Seq also provides you with a means of forcing a particular sequence of events – with

components running one after another – for example where you need to ensure that some

state (of the system, computer etc) is updated in a particular sequence. Examples here

include:

• Setting the Pygame Display to a particular configuration before running other

pygame components. This can be useful to set settings in sub processes when

working with multiple processes.

Example: (from a GSOC multi process paint app)

 ProcessGraphline(

 COLOURS = Seq(

 DisplayConfig(width=270, height=600),

 ToolBox(size=(270, 600)),

),

 WINDOW1 = Seq(

 DisplayConfig(width=555, height=520),

 Paint(bgcolour=(100,100,172),position=(10,10), size = (500,500),

 transparent = False),

),

• Another can be to sequence data senders and data receivers. This can be useful in

an “expect” type system, for example:

def authentication_sequence(state):

 return Seq(

Sender(“password: ”),

LineReceive(state, “username”, stripEOL=true),

Sender(“password: “)

LineReceive(state, “password”, stripEOL=true),

ConfirmIdentity(state),

)

NB. Neither Expect nor Sender exist as yet!

Exercise

Write Sender & Expect. Use them to replace the Authentication component in the bulletin

board example, which we'll see later. Bonus points for contributing this back to the

Kamaelia project!

48 Kamaelia

3.10 Backplanes – Broadcast for Components

A backplane is essentially a named broadcast mechanism for Kamaelia systems, and

consists of 3 components which are used together:

Backplane

• This creates and advertises a “Backplane” service to other components.

Specifically, components can connect to this service via a SubscribeTo or

PublishTo component. Any data published to the backplane by PublishTo

components is duplicated and sent to any connected SubscribeTo components.

PublishTo

• This looks for a previously advertised named service. When it finds it, it connects

its main outbox to the service, and any data it receives on its main inbox is sent to

the backplane.

SubscribeTo

• This looks for a previously advertised named service. When it finds it, it sends it a

message saying “send me data to my main inbox”. When the backplane does this,

any data SubscribeTo receives is forwarded to its main outbox.

As a result, given these you can build a vast array of interesting and flexibile topologies

using this. For example, to have an application take data from the console & a file, and to

enable the user to watch this on the console, and for the same data to drive, say, a

topology visualiser, using a backplane makes sense sense:

from Backplane import *

from Kamaelia.Chassis.PAR import PAR

from Kamaelia.Chassis.Pipeline import Pipeline

from Kamaelia.Util.Console import *

from Kamaelia.Visualisation.PhysicsGraph.TopologyViewer \

 import LineControlledTopologyViewer

PAR(

 Backplane(“topology”),

 Pipeline(ConsoleReader(),PublishTo(“topology”)),

 Pipeline(ReadFileAdaptor(filename),

 PublishTo(“topology”)),

 Pipeline(SubscribeTo(“topology”), ConsoleEchoer()),

 Pipeline(

 SubscribeTo(“topology”)

 LineControlledTopologyViewer(filename))

).run()

Note: We've used PAR here to activate all these components

in this order, by to run concurrently.

Using PAR for this is much cleaner, than .activate()

A Tutorial Overview 49

Console

Reader

PublishTo

(“topology”)

ReadFile

Adaptor

PublishTo

(“topology”)

Console

Echoer

SubscribeTo

(“topology”)

Topology

Visualiser

SubscribeTo

(“topology”)

Backplane(“topology”)

3.10.1 Services ?

Briefly, you can advertise any inbox to the rest of the system for others to find and connect

to.

Service

• A service is defined as a tuple that has this form (component, “someinboxname”).

• NB. A service is something that will sit as the second argument of a self.link call.

Public Service

• A public service is a service that has been named and registered with the

coordinating assistant tracker.

Providing a service

You register services like this:

class SomeComponent(Axon.Component.component):

 # Once your component is ready, advertise your service as follows:

 def advertiseService(servicename=”myservice”):

 # First find the co-ordinating assistant tracker

 theCAT = coordinatingassistanttracker.getcat()

 # Then a component can register a service with it:

 theCAT.registerService(servicename, self, "inbox")

When your component is shutting down, cease advertising your service as follows:

• def deregisterService(servicename=”myservice”):

 theCAT.deRegisterService(servicename)

It is your responsibility to ensure that clients of this service are aware that this is

happening. (eg messages you send them telling them this is going on)

Using a service

To use a service, you must look for the service...

theCAT = coordinatingassistanttracker.getcat()

the_service = theCAT.retrieveService("some service")

...and then connect an outbox of yours to it. Keeping a reference to the linkage is a good

idea at this point.

self.link_to_service = self.link((self, “outbox”), the_service)

You can then send it messages. For example, you may wish to receive data back from the

service, you may want to send it the name of an outbox to talk to. For it to do that you send

it a reference to a private service for it to talk to:

talk_to_me_here = (self, “inbox)

self.send((“send me data”, talk_to_me_here) , “outbox”)

50 Kamaelia

When you're done using it, you need to unlink the service. You do this as follows:

self.unlink(self.link_to_service)

The service you're using may require you to send a message to it before hand to let it know

you're doing this. You'll probably need to include some information so it knows who's doing

this, unless it's just interested in receiving data.

Eg:

self.send((“unsubscribing”, talk_to_me_here) , “outbox”)

self.unlink(self.link_to_service)

When are services used?

When there's a resource that multiple components may wish to use.

Examples:

• Selector – used by lots of active connections, servers, clients and some file

readers (including UnixProcess) in order to know when they can read or write to

from connections & files.

• PygameDisplay – uses this to advertise a display service to pygame components.

This allows one component to manage all user input, and farm off surfaces and

handling to components.

• Backplane – for providing broadcast facilities inside an application

Tools for uses services include:

• Backplane – Backplane, SubscribeTo, PublishTo

• Kamaelia.Experimental.Services – RegisterService, Subscribe, ToService

There is likely to be more components over time for using services.

Generally speaking though, if you need to provide a service, consider using Backplane,

rather than rolling your own code. (It's likely to simplify things!)

3.10.2 Backplane Internals

You don't need to understand what's going on inside these components to use them. For

those interested however:

Backplane

• This creates and advertises a “Backplane” service to other components.

Specifically, components can connect to this service via a SubscribeTo or

PublishTo component. Any data published to the backplane by PublishTo

components is duplicated and sent to any connected SubscribeTo components.

Under the hood this is a Kamaelia.Util.Splitter.PlugSplitter, and it registers 2

services with Axon's “Co-ordinating assistant tracker” (Cat :).

A Tutorial Overview 51

These services are:

• Backplane_I_+<name of backplane> - PublishTo talks to this.

• Backplane_O_+<name of backplane> - SubscribeTo talks to this.

More information on the Co-ordinating assistant tracker can be found here.

• http://www.kamaelia.org/Docs/Axon/Axon.CoordinatingAssistantTracker

You can simplify the creation of your own services using facilities provided inside

Kamaelia.Experimental.Services, specifically RegisterService, Subscribe, ToService.

PublishTo

• Simply looks up the backplane's inbound service, Backplane_I_+<name of backplane>

and connects its outbox to it, copying all input to its output.

SubscribeTo

• Creates a Kamaelia.Util.Splitter.Plug component

• Looks for the backplane's outbound service - Backplane_O_+<name of backplane>

• Provides this to the plug, which then hooks itself into the PlugSplitter

• It takes the output from that and passes it to its own output.

If you do decide to write your own services, this is a model worth looking at.

Generally speaking, though, many services are often best implemented using a Backplane,

since it enables you to hook up a pipeline to it to see what data is actually flowing to and

from your service.

3.11 Server Core

Kamaelia.Chassis.ConnectedServer contains the class ServerCore, this is designed to

handle all the nitty gritty details of handling lots of people connected to a TCP based

network server. As a result:

• It listens on a particular port

• You can provide some socketOptions to this if you like

• You can even override the TCPServer component it uses to listen for inbound

connections, if you need something custom (incredibly rare, but Kamaelia Grey

does this).

• Then when it receives a connection, it accepts the connection, sets up a

ConnectedSocketAdapter (CSA) to handle reading and writing to/from the

connection and needs something to accept the inbound data, and to send data

back, for the CSA to send back to the user.

This is where you come in.

As a result, the signature for ServerCore looks like this:

ServerCore(protocol[, port=1601] [, socketOptions=None] [, TCPS=TCPServer])

52 Kamaelia

protocol is a something which ServerCore will call when a connection is accepted.

This can be an actual component, or it can be something that returns a component. For

example, these can both be used:

Class based case

Class Echo(Axon.Component.component):

 def main(self):

 while not self.dataReady(“control”):

 for msg in self.Inbox(“inbox”):

 self.send(self.peer+msg, “outbox”)

 self.pause()

 yield 1

 self.send(self.recv(“control”), “signal”)

ServerCore(protocol=Echo, port=1601).run()

Factory based case

Class Echo(Axon.Component.component):

 def main(self):

 while not self.dataReady(“control”):

 for msg in self.Inbox(“inbox”):

 self.send(self.peer+msg, “outbox”)

 self.pause()

 yield 1

 self.send(self.recv(“control”), “signal”)

def myProtocol(**argv):

 return Pipeline(

 ConsoleEchoer(forwarder=True),

 Echo(**argv)

)

ServerCore(protocol=Echo, port=1601).run()

When a client connects, ServerCore will call whatever was provided by the user with some

information about the connection, effectively doing this:

the_callable = self.protocol

protocolHandler = the_callable(peer = sock_info["peer"],

 peerport = sock_info["peerport"],

 localip = sock_info["localip"],

 localport = sock_info["localport"])

In the class case, this just calls the class, and gets a component object back, and wires it

in, and in the factory case, it does the same.

Note: both the class case and factory case here use the same actual protocol. The factory

case dumping all inbound data to the console however is useful for debugging!

3.12 ServerCore & Backplanes

Something rather special happens when you combine these two components – let's revist

the radio 1 example.

We create a backplane.

We create a DVB tuner for radio 1, and

publish radio 1 to that backplane.

We start a ServerCore instance, which when

called will create a SubscribeTo which will

forward a copy or radio1 data to whomever

connects to the server.

Backplane("Radio").activate()

Pipeline(

 DVB_Multipex(850.16, [6210], feparams), # RADIO ONE

 PublishTo("Radio"),

).activate()

def radio(*argv, **argd):

 return SubscribeTo("Radio")

ServerCore(protocol=radio, port=1600).run()

A Tutorial Overview 53

This ability to create splitting servers incredibly trivially a really useful, and if you're ever

unclear as to what's going on inside a system of yours you can just intercept the data flow,

publish it to a backplane, connect a server to it and have a rummage.

For example, if you wanted to debug SMS sending application described earlier:

from Kamaelia.Chassis.Pipeline import Pipeline

from Kamaelia.Apps.Facilitate.SMSFileParser import SMSFileParser

from Kamaelia.Apps.Facilitate.SMSProcesser import SMSProcesser

from Kamaelia.Apps.Facilitate.SMSSender import SMSSender

from Kamaelia.Util.Console import ConsoleEchoer

Pipeline(

 DirectoryWatcher(watch = "/srv/www/sites/www.bickermanor.org/cgi/app/incomingsms"),

 SMSFileParser(),

 SMSProcesser(),

 SMSSender(),

 ConsoleEchoer(),

).activate()

And wanted to look at what was happening between the SMSProcessor and SMSSender,

you could change the above application as follows:

from Kamaelia.Chassis.Pipeline import Pipeline

from Kamaelia.Apps.Facilitate.SMSFileParser import SMSFileParser

from Kamaelia.Apps.Facilitate.SMSProcesser import SMSProcesser

from Kamaelia.Apps.Facilitate.SMSSender import SMSSender

from Kamaelia.Util.Console import ConsoleEchoer

from Kamaelia.Chassis.ConnectedServer import ServerCore

from Kamaelia.Util .Backplane import Backplane

from Kamaelia.Util.PureTransformer import PureTransformer

Backplane("DEBUGSERVER”).activate()

def debugSMSSystem (**argd):

 return Pipeline(

 PureTransformer(lambda x: repr(x)),

 SubscribeTo("DEBUGSERVER”)

)

ServerCore(protocol=debugSMSSystem, port=1601).activate()

Pipeline(

 DirectoryWatcher(watch = "/srv/www/sites/www.bickermanor.org/cgi/app/incomingsms"),

 SMSFileParser(),

 SMSProcesser(),

 PublishTo("DEBUGSERVER", forwarder=True),

 SMSSender(),

 ConsoleEchoer(),

).run()

The system then continues to work as before, however you can now telnet to port 1601 on

that machine, and watch what's actually being sent to the SMSSender for sending.

The ability to attach extra components to existing systems for introspection, debugging or in

some cases, rummaging around inside them when they're running, is something which is

particularly useful in Kamaelia systems.

54 Kamaelia

3.13 Shell Equivalence

For those used to the shell, and building ad-hoc commandlines which you often think ought

to be actual scripts, it's useful to note that a number of Kamaelia forms have direct

equivalence to the sort of thing you use on the shell.

This is useful to know because lots of people use concurrency using the shell without even

thinking about it, and without that even really being the goal. Kamaelia tries to aim for the

same eventual simplicity. There's a little way to go yet :)

Kamaelia Form Shell Form

A.activate() A&

Pipeline(A, B, C, D) A | B | C | D

PAR(A,B,C,D) (A & B & C & D)

Pipeline(PAR(A,B,C), D) (A & B & C) | D

Seq(A, B, C, D) A; B; C; D

Pipeline(Seq(A, B, C), D) (A; B; C) D

Graphline(...) ?

Backplane/PublishTo/SubscribeTo ?

However, unlike the Unix shell you:

• Have Graphlines, which have no direct equivalent.

• Pass fully formed python objects around, not bytes over a byte stream

• Have access to global publishing tools – services like Backplanes – which again,

have no equivalent in the shell world.

A Tutorial Overview 55

4 Kamaelia, in non-Kamaelia Systems
Kamaelia does not require you to rewrite your entire system to work with Kamaelia.

Or put another way, if you have a traditional piece of code – for example a GTK based

application, or a pygame application, or QT based, etc, and you wish to use some parts of

Kamaelia to deal with aspect of your problem you can do this, without rewriting your

application.

If you want to embed a debugging server as discussed in section 3.10, then you can do that

as well. Similarly, if you want to embed an interactive python console inside your application

that you can telnet to in order to rummage around to figure out a particularly tricky bug, you

can do that as well, without rewriting your application.

The reason for this is simple: Kamaelia is as happy running in a background thread as it is

in the foreground.

4.1 Axon.Handle

Clearly you need a means of then talking to Kamaelia components, without your head

exploding, and the way to do that is using Axon.Handle.

4.1.1 File Handles vs Axon Handles

The idea behind Axon.Handle is inspired by plain and simple file handles. It isn't a file

handle, so we don't call it that, but it is very similar, hence the name. But let's take a look

at file handles, so we have a common starting point, using this simple example:

source = open(“somefile.txt”)

sink = open(“someotherfile.txt”,”w”)

for line in source:

 sink.write(l)

source.close()

sink.close()

Now, what's actually happening here, in this seemingly innocuous piece of code?

• We have a main thread of control, which is the code that is written.

• We've asked the operating system to allocate some resource for reading from a

file, and to allocated some resource for writing to the file.

• The system starts reading the file in a buffered manner. Now whether this is via a

state machine, handled on the python side, or on the OS side, something has been

allocated that knows it is reading from a file. It's interacting with a file system

subsystem for accessing bytes from whatever device “somefile.txt” resides upon,

which may actually be over NFS (incurring network reads & writes), which may be

reserving something from an sshfs FUSE based file system accessed over an ssh

56 Kamaelia

connection.

• Something similar may be happening with the file writer.

• Then our thread of control is waiting for data, when there's some there taking it,

and placing it into some write buffer that will eventually get flushed and written to

whereever the file is actually located.

Essentially, despite not worrying about it, file handles are in fact masking significant

amounts of concurrent behaviour from a user.

Axon.Handles

Axon.Handle does the same thing, but for Axon/Kamaelia based components.

You ask Axon.Handle to activate a component for you and provide you with a handle to that

component. You can then put messages into inboxes, and get messages from inboxes.

The one difference between Axon.Handles and file handles is that Axon.Handles default to

being non-blocking. If you try and read from an empty outbox, you'll get a Queue.Empty

message as a response (much like reading from a non-blocking file handle gives you a

similar message if it's not ready).

4.1.2 Using Axon.Handle

Suppose we have a server we know is running on www.example.com port 1600, we can

write tcp client that uses the Kamaelia TCP client in normal linear code.

Necessary imports for handles to work:

from Axon.background import background

from Axon.Handle import Handle

Necessary for handle when data isn't ready:

import Queue

import time

The component we want to use:

from Kamaelia.Internet.TCPClient import TCPClient

We then start the scheduler in the background:

background(slowmo=0.01).start()

Then we can run use Axon.Handle to read/write to/from the network connection.

our_client = Handle(TCPClient(host = "www.example.com", port = 1600)).activate()

while True:

 user_data = raw_input(">>> ")

 our_client.put(user_data,"inbox")

 while 1:

 try:

 print our_client.get("outbox")

 break

 except Queue.Empty:

 time.sleep(0.01)

A Tutorial Overview 57

4.2 Augmenting Existing Systems

Now, let's suppose you've writte a GTK application, and you want to do some user testing.

You want to accurately track why they're consistently getting something wrong, and you're

not getting good data from user reports, and you suspect they're hitting a button they

shouldn't. In that case it'd be useful to augment it such that such events got sent to a

central server for logging. Let's look at how you could do that with Kamaelia, and Axon

handles.

So this is our basic GTK application:

import gtk

class HelloWorld:

 def hello(self, widget, data=None):

 print "Hello World"

 def delete_event(self, widget, event, data=None):

 print "delete event occurred"

 return False

 def destroy(self, widget, data=None):

 print "me"

 gtk.main_quit()

 def __init__(self):

 self.window = gtk.Window(gtk.WINDOW_TOPLEVEL)

 self.window.connect("delete_event", self.delete_event)

 self.window.connect("destroy", self.destroy)

 self.window.set_border_width(10)

 self.button = gtk.Button("Hello World")

 self.button.connect("clicked", self.hello, None)

 self.window.add(self.button)

 self.button.show()

 self.window.show()

def main():

 gtk.main()

if __name__ == "__main__":

 hello = HelloWorld()

 main()

Let's say we have our event logging server running this on a seperate server running on

192.168.2.5 , port 1500. Our imports for that might look like this:

import time

from Kamaelia.Util.Backplane import *

from Kamaelia.Chassis.Pipeline import Pipeline

from Kamaelia.Chassis.ServerCore import ServerCore

from Kamaelia.File.Append import Append

from Kamaelia.Util.PureTransformer import PureTransformer

We then want to have our server log to the file. Since we may want to have lots of people

sending us data, we'll tag data on the way in, and send it to a backplane, and then let a

58 Kamaelia

single logger handle logging for us. It'll also timestamp events.

The backplane set up:

Backplane("UI_EVENTS").activate()

The server side part that handles timestamping & logging.

Pipeline(

 SubscribeTo("UI_EVENTS"),

 PureTransformer(lambda x: str(time.time()+”|”+x),

 Append(filename = "userlog.txt"),

).activate()

The protocol handler we have for the server would be this – note that it tags inbound data

with the client IP:

def log_events (**argd):

 peer = str(argd.get(peer, ""))

 return Pipeline(

 PureTransformer(lambda x: peer + “|” + x),

 PublishTo("UI_EVENTS")

)

Finally, we run the logging server:

ServerCore(protocol=log_events, port=1500).run()

How do we get the GTK application to talk to this? In the same way as we did with the hello

world application – let's take a look:

import gtk

from Axon.background import background

from Axon.Handle import Handle

from Kamaelia.Internet.TCPClient import TCPClient

background(slowmo=0.01).start()

our_client= Handle(TCPClient(host = "192.168.2.5", port = 1500)).activate()

class HelloWorld:

 def hello(self, widget, data=None):

 print "Hello World"

 our_client.put(“Hello World Clicked”)

 def delete_event(self, widget, event, data=None):

 print "delete event occurred"

 return False

 def destroy(self, widget, data=None):

 print "me"

 gtk.main_quit()

 def __init__(self):

 self.window = gtk.Window(gtk.WINDOW_TOPLEVEL)

 self.window.connect("delete_event", self.delete_event)

 self.window.connect("destroy", self.destroy)

 self.window.set_border_width(10)

A Tutorial Overview 59

 self.button = gtk.Button("Hello World")

 self.button.connect("clicked", self.hello, None)

 self.window.add(self.button)

 self.button.show()

 self.window.show()

def main():

 gtk.main()

if __name__ == "__main__":

 hello = HelloWorld()

 main()

As you can see the GTK application is largely unchanged.

4.3 Using Axon.Handles with Kamaelia Systems

Since a Kamaelia system is itself a component, with a bit of effort you can control any part

of a Kamaelia system this way. For example, inserting a SubscribeTo component

somewhere means you can put a handle round a PublishTo component, and post data

anywhere inside the Kamaelia system. Or vice versa.

So if you want to use the topology visualiser, you can use that with your twisted based

network system if you really want to.

4.4 Embedding a Python Interpreter

Kamaelia has a python interpreter component, which we touched upon earlier. This can be

be used inside (say) a pygame window like this:

from Kamaelia.Chassis.Pipeline import Pipeline

from Kamaelia.UI.Pygame.Text import Textbox

from Kamaelia.UI.Pygame.Text import TextDisplayer

from Kamaelia.Experimental.PythonInterpreter import InterpreterTransformer

Pipeline(

 Textbox(size = (800, 300), position = (100,380)),

 InterpreterTransformer(),

 TextDisplayer(size = (800, 300), position = (100,40)),

).run()

We can obviously attach this to any python system – whether Kamaelia based or not. For

example, to embed it in the logging server we discussed, our logging server changes to this:

import time

from Kamaelia.Util.Backplane import *

from Kamaelia.Chassis.Pipeline import Pipeline

from Kamaelia.Chassis.ServerCore import ServerCore

from Kamaelia.File.Append import Append

from Kamaelia.Util.PureTransformer import PureTransformer

60 Kamaelia

from Kamaelia.UI.Pygame.Text import Textbox

from Kamaelia.UI.Pygame.Text import TextDisplayer

from Kamaelia.Experimental.PythonInterpreter import InterpreterTransformer

Backplane("UI_EVENTS").activate()

Pipeline(

 SubscribeTo("UI_EVENTS"),

 PureTransformer(lambda x: str(time.time()+”|”+x),

 Append(filename = "userlog.txt"),

).activate()

def log_events (**argd):

 peer = str(argd.get(peer, ""))

 return Pipeline(

 PureTransformer(lambda x: peer + “|” + x),

 PublishTo("UI_EVENTS")

)

Pipeline(

 Textbox(size = (800, 300), position = (100,380)),

 InterpreterTransformer(),

 TextDisplayer(size = (800, 300), position = (100,40)),

).activate()

ServerCore(protocol=log_events, port=1500).run()

Whilst this may seem odd to be able to have a running interpreter inside a server, being

able to do this is a natural consequence of Kamaelia. Once you can run whatever

components you want in parallel with all the others, you can run anything with anything.

4.4.1 Embedding a Network accessible Kamaelia

Python Console in non-Kamaelia systems

Suppose however that this wasn't enough for us to figure out what was going wrong with the

user application we modified earlier. Suppose we wanted to login to a python console

embedded to our GTK application, over the network. Can we do that? Sure we'd have to do

serious amounts of rummaging around to find what we needed, but can we do it?

Yes, we can :-)

This turns out to be simpler than you might think – it looks like this:

import gtk

class HelloWorld:

 def hello(self, widget, data=None):

 print "Hello World"

 def delete_event(self, widget, event, data=None):

 print "delete event occurred"

 return False

 def destroy(self, widget, data=None):

 print "me"

 gtk.main_quit()

 def __init__(self):

 self.window = gtk.Window(gtk.WINDOW_TOPLEVEL)

A Tutorial Overview 61

 self.window.connect("delete_event", self.delete_event)

 self.window.connect("destroy", self.destroy)

 self.window.set_border_width(10)

 self.button = gtk.Button("Hello World")

 self.button.connect("clicked", self.hello, None)

 self.window.add(self.button)

 self.button.show()

 self.window.show()

def main():

 gtk.main()

if __name__ == "__main__":

 from Axon.background import background

 from Kamaelia.Chassis.Pipeline import Pipeline

 from Kamaelia.Chassis.ConnectedServer import ServerCore

 from Kamaelia.Util.PureTransformer import PureTransformer

 from Kamaelia.Experimental.PythonInterpreter import InterpreterTransformer

 background(slowmo=0.01).start()

 def NetInterpreter(**argv):

 return Pipeline(

 PureTransformer(lambda x: str(x).rstrip()),

 PureTransformer(lambda x: str(x).replace("\r","")),

 InterpreterTransformer(),

 PureTransformer(lambda x: str(x)+"\r\n>>> "),

)

 ServerCore(protocol=NetInterpreter, port=9765).activate()

 hello = HelloWorld()

 main()

You can then telnet to this application – eg 127.0.0.1 port 9765, and you're presented with

a python console, and can rummage around inside to your hearts content.

4.4.2 Health Warning

It's a VERY bad idea to connect a network

accessible python interpreter to the bare

internet. Very, Very Very bad things can

happen if you do this.

Don't do it, only use it in a completely

controlled environment.

That said, in a completely controlled environment, this is an incredibly useful tool to have

available!

62 Kamaelia

5 Building A Bulletin Board

As our final example, we'll build an old-school style bulletin board. It'll have the following

behaviour:

• You'll telnet to port 1600 on the server to login

• You'll be prompted for a username & password. For simplicity we won't hide the

password from the user when they're typing it. It'll keep prompting for a username/

password until they're logged in or disconnect.

• The system will then retrieve the users state. (Actually we'll leave this as a stub)

• The user will then be able to interact with the bulletin board.

• When they choose the logout option, their state will be saved. (again we'll leave

that as a stub)

• The final version should also be capable of handling strings sent to the client which

have returns in odd places or strings which don't contain carriage returns. (Telnet

under linux happens to default to line oriented, but not all telnet applications work

that way)

Once logged in, the user will be presented with the option of doing three things:

• Entering a message reading/sending mode.

• Displaying help – h, followed by return.

• Quitting – q followed by return.

When in the message reading mode, they will be presented with the next unread message,

followed and then they again have some options:

• Return to view the next message

• r – to enter a reply to another message. (we won't implement this, but you could)

• d – to delete the message (again, we won't implement this, but you could)

• h – for help

• x – to exit message reading back to the menu

For brevity's sake we won't implement message read marking nor adding messages.

However the system will stored all the messages in a directory called “messages”. They will

be stored as serialised JSON objects, which will be structures of the following form:

{

 'from': 'michael',

 'to': 'michael',

 'message': '4',

 'date': 'TBD',

 'subject': 'test',

 'reply-to': ['3', '2', '1'],

 '__body__': 'Testing\nTesting\n123'

}

A Tutorial Overview 63

The strings in reply-to are references to other messages. Clearly creating these message

objects is relatively simple once, you have the rest of the system in place.

5.1 Building up the initial protocol

The question with this system, is where do you start?

Well we want a network server, so let's start there, and we're responding to the user's, so

let's be a little unimaginative and create a server with a protocol handle by a

RequestResponseComponent.

The skeleton of that looks like this:

import Axon

from Kamaelia.Chassis.ConnectedServer import ServerCore

class RequestResponseComponent(Axon.Component.component):

 def main(self):

 while not self.dataReady("control"):

 for msg in self.Inbox("inbox"):

 self.send(msg, "outbox")

 self.pause()

 yield 1

 self.send(self.recv("control"), "signal")

ServerCore(protocol=RequestResponseComponent,

 port=1600).run()

• File: BB1.py

When you run this, if kill the server without killing all the clients by hitting control-C, this can

leave the server unable to accept connections for 60 seconds. This is due to the operating

system & TCP/IP stack rather than Kamaelia.

Since it's the operating system default, it's also Kamaelia's default. It can however be

annoying when you're writing a server, or server needing a fast restart. Let's make it so that

we can restart the server quicker:

import socket

import Axon

from Kamaelia.Chassis.ConnectedServer import ServerCore

class RequestResponseComponent(Axon.Component.component):

 def main(self):

 while not self.dataReady("control"):

 for msg in self.Inbox("inbox"):

 self.send(msg, "outbox")

 self.pause()

 yield 1

 self.send(self.recv("control"), "signal")

ServerCore(protocol=RequestResponseComponent,

 socketOptions=(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1),

 port=1600).run()

• File: BB2.py

64 Kamaelia

Now, what we'd like to write really is something like this:

self.send("username: ")

username = self.getResponse()

self.send("username: ")

username = self.getResponse()

if loggedin:

 self.netPrint("login successful")

else:

 self.netPrint("login failed")

Now, in practice, we can't do this – generator components simply don't work this way.

However we can do something close (and maybe closer in future). Rather than saying:

yield 1

To release control back to the scheduler, we can do this:

yield WaitComplete(<some generator>)

and allow the scheduler to run that generator before coming back to use. In essence this

gives us a function call.

Since we don't need netPrint yet, we'll ignore that for now, and aim for handling request &

response cycles. Initially, let's aim for this:

yield WaitComplete(self.waitMsg())

msg = self.getMsg()

The changes we need to do this then becomes this:

import socket

import Axon

from Axon.Ipc import WaitComplete

from Kamaelia.Chassis.ConnectedServer import ServerCore

class RequestResponseComponent(Axon.Component.component):

 def waitMsg(self):

 while not self.dataReady("inbox"):

 self.pause()

 yield 1

 def getMsg(self):

 return self.recv("inbox")

 def main(self):

 while not self.dataReady("control"):

 for msg in self.Inbox("inbox"):

 self.send(msg, "outbox")

 self.pause()

 yield 1

 self.send(self.recv("control"), "signal")

ServerCore(protocol=RequestResponseComponent,

 socketOptions=(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1),

 port=1600).run()

• File: BB3.py

A Tutorial Overview 65

So far so good, we can now use this to do a little request response behaviour – we change

the main body of the loop from the stub that's copying user input to standard output to

something that loops asking for a login & password.

Those changes look like this:

import socket

import Axon

from Axon.Ipc import WaitComplete

from Kamaelia.Chassis.ConnectedServer import ServerCore

class RequestResponseComponent(Axon.Component.component):

 def waitMsg(self):

 while not self.dataReady("inbox"):

 self.pause()

 yield 1

 def getMsg(self):

 return self.recv("inbox")

 def main(self):

 while not self.dataReady("control"):

 self.send("login: ", "outbox")

 yield WaitComplete(self.waitMsg())

 username = self.getMsg()

 self.send("password: ", "outbox")

 yield WaitComplete(self.waitMsg())

 password= self.getMsg()

 print

 print repr(username), repr(password)

 self.pause()

 yield 1

 self.send(self.recv("control"), "signal")

ServerCore(protocol=RequestResponseComponent,

 socketOptions=(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1),

 port=1600).run()

• File: BB4.py

When we run this, we see this on the server side:

~/Incoming/Europython/Demo> ./BB4.py

'michael\r\n' 'password\r\n'

And this on the client side:

~/Incoming/Europython> telnet 127.0.0.1 1600

Trying 127.0.0.1...

Connected to 127.0.0.1.

Escape character is '^]'.

login: michael

password: password

Now this is getting very close to what we want to write, generally speaking, for this kind of

protocol.

66 Kamaelia

But there's an issue. The standard approach for checking for control messages doesn't

really work now, because in waitMsg we're not listening for them and they could get missed.

So what we'll do is we'll redefine some behaviour:

• We'll say that waitMsg can return when there's a message on “inbox” or “control”

• We'll change getMsg to check for a message on control, and if it finds one, it'll

raise an exception called GotShutdownMessage.

• Then when we do waitMsg/getMsg, we'll break out of the loop as needed.

Then we need to change our main method such that it catches this exception, and if caught

sends on the control message, or otherwise sends on a producerFinished message. (the

message we should do when we're done)

Also, we note that the username & password are raw data, so we need to remember that

with anything that's using these values from the network.

All that results in the following changes: (File: BB5.py)

import socket

import Axon

from Axon.Ipc import WaitComplete

from Kamaelia.Chassis.ConnectedServer import ServerCore

class GotShutdownMessage(Exception):

 pass

class RequestResponseComponent(Axon.Component.component):

 def waitMsg(self):

 while (not self.dataReady("inbox")) and (not self.dataReady("control")):

 self.pause()

 yield 1

 def getMsg(self):

 if self.dataReady("control"):

 raise GotShutdownMessage()

 return self.recv("inbox")

 def main(self):

 try:

 while 1:

 self.send("login: ", "outbox")

 yield WaitComplete(self.waitMsg())

 username = self.getMsg()

 self.send("password: ", "outbox")

 yield WaitComplete(self.waitMsg())

 password= self.getMsg()

 print

 print repr(username), repr(password)

 self.pause()

 yield 1

 except GotShutdownMessage:

 self.send(self.recv("control"), "signal")

 self.send(Axon.Ipc.producerFinished(), "signal")

ServerCore(protocol=RequestResponseComponent,

 socketOptions=(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1),

A Tutorial Overview 67

 port=1600).run()

Now before we go any further, let's consider.

• This is essentially the authentication part of the system, so it ought to be named

something better. Authenticator is a good name.

• Most of the main bulletin board code is likely to work in a similar fashion, so

reusing some of what we have here for that would be useful.

• As a result, factoring out the protocol specific bits from the reusable bits looks like

a good idea. We could do this now or later, but for this exercise we'll do it now.

That refactoring then looks like this, note the change to the ServerCore line: (File: BB6.py)

import socket

import Axon

from Axon.Ipc import WaitComplete

from Kamaelia.Chassis.ConnectedServer import ServerCore

class GotShutdownMessage(Exception):

 pass

class RequestResponseComponent(Axon.Component.component):

 def waitMsg(self):

 while (not self.dataReady("inbox")) and (not self.dataReady("control")):

 self.pause()

 yield 1

 def getMsg(self):

 if self.dataReady("control"):

 raise GotShutdownMessage()

 return self.recv("inbox")

 def main(self):

 self.send("no protocol attached\r\n\r\n")

 self.send(Axon.Ipc.producerFinished(), "signal")

 yield 1

class Authenticator(RequestResponseComponent):

 def main(self):

 try:

 while 1:

 self.send("login: ", "outbox")

 yield WaitComplete(self.waitMsg())

 username = self.getMsg()

 self.send("password: ", "outbox")

 yield WaitComplete(self.waitMsg())

 password= self.getMsg()

 print

 print repr(username), repr(password)

 self.pause()

 yield 1

 except GotShutdownMessage:

 self.send(self.recv("control"), "signal")

 self.send(Axon.Ipc.producerFinished(), "signal")

ServerCore(protocol=Authenticator,

 socketOptions=(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1),

68 Kamaelia

 port=1600).run()

We'll make one final change to RequestResponseComponent – specifically to wrap the

“checking control and raise an exception” idea, since it's likely that other components may

want to check that in places.

We'll also add in the netPrint function we wanted earlier.

This results in that class looking like this:

class RequestResponseComponent(Axon.Component.component):

 def waitMsg(self):

 while (not self.dataReady("inbox")) and (not self.dataReady("control")):

 self.pause()

 yield 1

 def checkControl(self):

 if self.dataReady("control"):

 raise GotShutdownMessage()

 def getMsg(self):

 if self.dataReady("control"):

 raise GotShutdownMessage()

 return self.recv("inbox")

 def netPrint(self, arg):

 self.send(arg + "\r\n", "outbox")

 def main(self):

 self.send("no protocol attached\r\n\r\n")

 self.send(Axon.Ipc.producerFinished(), "signal")

 yield 1

So let's think – we have two options. We can either continue to make the authenticator

more complex, or we can create components for each of these stages:

• Authentication

• User info retrieval

• Main bulletin board logic/ UI

• User state storage

And run them in sequence. If we do that we'll probably want to pass along user state

between the components.

Whilst that may sound tricky, since we know that these will be run one after another, we can

just pass them all a reference to the same dictionary, and know that it'll be updated by the

time it gets to the next component. (This is a bit like WSGI, for those that know WSGI)

In Kamaelia terms, that means rather than creating just an Authenticator to handle the

connection, it'd be useful if the ServerCore something like this to happen, and used the

resulting component:
ConnectionInfo = {}

Seq(

 Authenticator(State = ConnectionInfo),

 UserRetriever(State = ConnectionInfo),

 MessageBoardUI(State = ConnectionInfo),

 StateSaverLogout(State = ConnectionInfo),

)

A Tutorial Overview 69

Since this seems like a nice thing to do, rather than make the Authenticator more complex,

let's make the changes needed to allow this to happen, even though we only have one of

these components so far.

Specifically we're changing the ServerCore line and the initialisation of the Authenticator. In

the authenticator, since we can rely on inheritable defaults to add an attribute in the right

place, all we need to do is to provide a default value in the class definition. In the

ServerCore line, we're changing that to use a factory function instead.

So the changed parts of the code are:

from Kamaelia.Chassis.Seq import Seq

class Authenticator(RequestResponseComponent):

 State = {}

 def main(self):

 try:

 while 1:

 self.send("login: ", "outbox")

 yield WaitComplete(self.waitMsg())

 username = self.getMsg()

 self.send("password: ", "outbox")

 yield WaitComplete(self.waitMsg())

 password= self.getMsg()

 print

 print repr(username), repr(password)

 self.pause()

 yield 1

 except GotShutdownMessage:

 self.send(self.recv("control"), "signal")

 self.send(Axon.Ipc.producerFinished(), "signal")

def CompositeBulletinBoardProtocol(**argd):

 ConnectionInfo = {}

 ConnectionInfo.update(argd)

 return Seq(

 Authenticator(State = ConnectionInfo),

)

ServerCore(protocol=CompositeBulletinBoardProtocol,

 socketOptions=(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1),

 port=1600).run()

• File: BB8.py

You'll also note that rather just passing in an empty dictionary, we've decided to pass in the

4 attributes that ServerCore passes us – peer, peerport, localip, localport – in case the

protocols we're writing (and stacking) find that information useful.

Now that we've done that the authenticator has a clear role. After reading in a

username/password file it should wait for the user to give them a username & password,

and when they succeed, add the username to the State dictionary it's been passed and

then exit. This isn't a strong authentication scheme of course, but then what we're

70 Kamaelia

protecting is a simple bulletin board – it doesn't need to be bullet proof.

However, if you made any stronger authentication component, you could swap it in as a

replacement for this one, as long as it updated the State's username appropriately. (in

much the same way you can have different authentication schemes in WSGI)

The changes necessary to make that happen are:

• Reading the custom password file

• Change the loop to depend on whether the user has logged in or not

• Check user provided data against the password data, remembering that network

strings are terminated with “\r\n”, so stripping that data.

• We'll make it slightly more pleasant from the user's perspective by adding some

blank lines in places as well, using netPrint.

• We no longer want it to terminate the connection, so we stop sending a

producerFinished message.

The resulting changed code looks like this:

import cjson

...

class Authenticator(RequestResponseComponent):

 State = {}

 def main(self):

 loggedin = False

 try:

 self.netPrint("")

 while not loggedin:

 self.send("login: ", "outbox")

 yield WaitComplete(self.waitMsg())

 username = self.getMsg()[:-2] # strip \r\n

 self.send("password: ", "outbox")

 yield WaitComplete(self.waitMsg())

 password= self.getMsg()[:-2] # strip \r\n

 self.netPrint("")

 if users.get(username.lower(), None) == password:

 self.netPrint("Login Successful")

 loggedin = True

 else:

 self.netPrint("Login Failed!")

 except GotShutdownMessage:

 self.send(self.recv("control"), "signal")

 if loggedin:

 self.State["remoteuser"] = username

def CompositeBulletinBoardProtocol(**argd):

 ConnectionInfo = {}

 ConnectionInfo.update(argd)

 return Seq(

 Authenticator(State = ConnectionInfo),

)

A Tutorial Overview 71

def readUsers():

 f = open("users.passwd")

 users = f.read()

 f.close()

 users = cjson.decode(users)

 return users

users = readUsers()

ServerCore(protocol=CompositeBulletinBoardProtocol,

 socketOptions=(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1),

 port=1600).run()

• File: BB9.py

If we run this, the interested user will now see this:

~/Incoming/Europython> telnet 127.0.0.1 1600

Trying 127.0.0.1...

Connected to 127.0.0.1.

Escape character is '^]'.

login: michael

password: sparks

Login Failed!

login: michael

password: password

Login Successful

Connection closed by foreign host.

We appear to be getting somewhere! We can cross one part of the system off the list:

Seq(

 Authenticator(State = ConnectionInfo),

 UserRetriever(State = ConnectionInfo),

 MessageBoardUI(State = ConnectionInfo),

 StateSaverLogout(State = ConnectionInfo),

)

Let's now write stubs for the UserRetriever and StateSaverLogout protocol handers. These

can be trivial, since they're really for another time if you decided to implement user state

(which is very likely).

Those changes look like this:

class UserRetriever(RequestResponseComponent):

 State = {}

 def main(self):

 self.netPrint("")

 self.netPrint("Retrieving user data...")

 self.netPrint("")

 yield 1

class StateSaverLogout(RequestResponseComponent):

 State = {}

 def main(self):

 self.netPrint("")

 self.netPrint("Saving user data...")

72 Kamaelia

 self.netPrint("")

 self.netPrint("Goodbye!")

 self.netPrint("")

 yield 1

def CompositeBulletinBoardProtocol(**argd):

 ConnectionInfo = {}

 ConnectionInfo.update(argd)

 return Seq(

 Authenticator(State = ConnectionInfo),

 UserRetriever(State = ConnectionInfo),

 StateSaverLogout(State = ConnectionInfo),

)

• File: BB10.py

Finally, we need to write the Bulletin Board logic itself. Before we do that however, let's

make one final change to RequestResponseComponent so that rather than typing:

• yield WaitComplete(self.waitMsg())

We can write:

• yield self.waitMsg()

Before

def waitMsg(self):

 while (not self.dataReady("inbox")) and

 (not self.dataReady("control")):

 self.pause()

 yield 1

After

def waitMsg(self):

 def _waitMsg(self):

 while (not self.dataReady("inbox")) and

 (not self.dataReady("control")):

 self.pause()

 yield 1

 return WaitComplete(_waitMsg(self))

This change makes it it simpler to work with this approach, changing the relevant parts of

the Authenticator like this:

 self.send("login: ", "outbox")

 yield self.waitMsg()

 username = self.getMsg()[:-2] # strip \r\n

 self.send("password: ", "outbox")

 yield self.waitMsg()

 password= self.getMsg()[:-2] # strip \r\n

Which is more or less what we wanted.

5.2 Writing the Bulletin Board UI

We now have a base class that we can use for this, so first of all, let's implement the top

level menu system, and use a stub function for the reading messages option. Specifically

we want to do this:

• Wait for a user input

• If it's empty, show messages

• If it's an “h” show some help

A Tutorial Overview 73

• If it's a “q”, quit.

• We also want to insert it into the protocol sequence.

Since we have a means of asking the user questions, and prompts, we can write this pretty

directly. The changes we make to the program are this:

class MessageBoardUI(RequestResponseComponent): # (all new)

 State = {}

 def doMainHelp(self):

 self.netPrint("<return> - browse messages")

 self.netPrint("h – help")

 self.netPrint("q - quit")

 def doMessagesMenu(self, user):

 pass

 def main(self):

 user = self.State.get("remoteuser", "anonymous")

 try:

 self.netPrint("")

 self.netPrint("Hello, "+user)

 while 1:

 self.send("main> ", "outbox")

 yield self.waitMsg()

 command = self.getMsg()[:-2]

 if command == "h":

 self.doMainHelp()

 if command == "q":

 break

 if command == "":

 self.doMessagesMenu(user)

 except GotShutdownMessage:

 self.send(self.recv("control"), "signal")

 yield 1

def CompositeBulletinBoardProtocol(**argd):

 ConnectionInfo = {}

 ConnectionInfo.update(argd)

 return Seq(

 Authenticator(State = ConnectionInfo),

 UserRetriever(State = ConnectionInfo),

 MessageBoardUI(State = ConnectionInfo),

 StateSaverLogout(State = ConnectionInfo),

)

• File: BB12.py

The next step is to implement doMessagesMenu such that it actually shows messages

which can act in a very similar way to this main method.

Since it'll be a generator, we'll need to call it using the yield WaitComplete(...) approach, and

when that returns, we'll want to check control, in case that was the reason for exiting that

method. If it was the case, by doing so we'll re-throw our exception and be well behaved.

74 Kamaelia

The logic for the doMessagesMenu method should be this:

• Read in all the unread messages for the user

• While there are any unread messages

• Tell the user how many unread messages they have & wait for some user

input. The prompt should change to show that they're in “messages> “ mode.

• If they just press return, show the next unread message

• If they type “h”, show some help, this can be a stub for now

• If they type “x”, quit

For the moment, we'll implement the unread messages as a stub, and display of messages

as a stub.

Let's make those changes and see the difference:

class MessageBoardUI(RequestResponseComponent):

 State = {}

 def doMainHelp(self):

 self.netPrint("<return> - browse messages")

 self.netPrint("h – help")

 self.netPrint("q - quit")

 def getUnreadMessages(self, user):

 return ["to be implemented"]

 def displayMessage(self, message):

 self.netPrint(message)

 def doMessagesHelp(self)

 self.netPrint(“to be implemented)

 def doMessagesMenu(self, user):

 try:

 messages = self.getUnreadMessages(user)

 while len(messages) > 0:

 self.netPrint("")

 self.netPrint("You have "+str(len(messages))+" message(s)”\

 “ waiting")

 self.send("messages> ", "outbox")

 yield self.waitMsg()

 command = self.getMsg()[:-2]

 if command == "":

 message = messages.pop(0)

 self.displayMessage(message)

 if command == "x":

 break

 if command == "h":

 self.doMessagesHelp()

 except GotShutdownMessage:

 pass # Expect the "caller" to check for control as well

A Tutorial Overview 75

 def main(self):

 user = self.State.get("remoteuser", "anonymous")

 try:

 self.netPrint("")

 self.netPrint("Hello, "+user)

 while 1:

 self.send("main> ", "outbox")

 yield self.waitMsg()

 command = self.getMsg()[:-2]

 if command == "h":

 self.doMainHelp()

 if command == "q":

 break

 if command == "":

 yield WaitComplete(self.doMessagesMenu(user))

 self.checkControl()

 except GotShutdownMessage:

 self.send(self.recv("control"), "signal")

 yield 1

• File: BB13.py

Now we need a source of actual messages. For this we'll wrap up a collection of messages

using the concept of a folder. A folder contains files which are numbered, and those files

contain serialised JSON objects. We need tools for getting all the messages, and for

convenience one at a time as well.

Since this isn't specific to Kamaelia, this is what we're working with:

class Folder(object):

 def __init__(self, folder="messages"):

 super(Folder, self).__init__()

 self.folder = folder

 try:

 f = open(self.folder + "/.meta")

 raw_meta = f.read()

 f.close()

 meta = cjson.decode(raw_meta)

 except IOError:

 meta = {"maxid": 0}

 self.meta = meta

 def getMessage(self, messageid):

 try:

 f = open(self.folder + "/" + str(messageid))

 message = f.read()

 f.close()

 message = cjson.decode(message)

 return message

 except IOError:

 return None

 def getMessages(self):

 messages = []

 for i in os.listdir(self.folder):

 if i[:1] == ".":

 continue

 messages.append(self.getMessage(i))

 return messages

76 Kamaelia

Given this we can now finish off the Bulletin Board UI, by replacing these three methods:

 def getUnreadMessages(self, user):

 return ["to be implemented"]

 def displayMessage(self, message):

 self.netPrint(message)

 def doMessagesHelp(self)

 self.netPrint(“to be implemented)

... with actual implementations:

 def getUnreadMessages(self, user):

 X = Folder()

 return X.getMessages()

 def displayMessage(self, message):

 self.netPrint("")

 for key in ["message", "date", "from", "to", "subject",]:

 self.netPrint("%s: %s" % (key, message[key]))

 if len(message["reply-to"]) > 0:

 self.netPrint("In-Reply-To: "+(", ".join(message["reply-to"])))

 self.netPrint("")

 self.netPrint(message["__body__"])

 def doMessagesHelp(self):

 self.netPrint("<return> - next message (exit if on last message)")

 self.netPrint("r - Reply (to be implemented)")

 self.netPrint("d - Delete message (to be implemented)")

 self.netPrint("h – Help")

 self.netPrint("x - eXit to main menu")

• File: BB14.py

And now when we run the server, and a user logs in, they get the following experience:

~/Incoming/Europython> telnet 127.0.0.1 1600

Trying 127.0.0.1...

Connected to 127.0.0.1.

Escape character is '^]'.

login: michael

password: password

Login Successful

Retrieving user data...

Hello, michael

main>

You have 4 message(s) waiting

messages>

message: 1

date: TBD

from: michael

to:

subject: test

A Tutorial Overview 77

Testing, Testing, 123

You have 3 message(s) waiting

messages>

message: 2

date: TBD

from: michael

to: michael

subject: test

In-Reply-To: 1

Testing, Testing, 123

You have 2 message(s) waiting

messages> h

<return> - next message (exit if on last message)

r - Reply (to be implemented)

d - Delete message (to be implemented)

h – Help

x - eXit to main menu

You have 2 message(s) waiting

messages> x

main> h

<return> - browse messages

h – help

q – quit

main> q

Saving user data...

Goodbye!

Connection closed by foreign host.

And there we have it, the essentials of a bulletin board system written using Kamaelia. Now

that we have built up these core components, reusing these to build more bulletin board

type systems would be trivial.

For nicety, the complete source of the bulletin board is presented next, and includes 1

further change. Another component – LineOrientedInputBuffer – has been added, which is

used here:

def CompositeBulletinBoardProtocol(**argd):

 ConnectionInfo = {}

 ConnectionInfo.update(argd)

 return Pipeline(

 LineOrientedInputBuffer(),

 Seq(

 Authenticator(State = ConnectionInfo),

 UserRetriever(State = ConnectionInfo),

 MessageBoardUI(State = ConnectionInfo),

 StateSaverLogout(State = ConnectionInfo),

)

)

78 Kamaelia

This has been added to join partial line fragments together from the network connection,

and to only forward complete lines. It has the extra detail in that it only sends a line when it

knows the receiver buffer is ready. For this to work we've put this into a Pipeline, but

otherwise the protocol stack is unchanged.

And that as they say is that.

5.3 Summary

This section has seen us build a relatively large Kamaelia based system, with incremental

growth, with both growing components, and growing systems. Based on this there's a

number of possible extensions that could be made.

For example, this blog post details how to stack Kamaelia protocols on top of each other:

• http://yeoldeclue.com/cgi-bin/blog/blog.cgi?rm=viewpost&nodeid=1223342651

In that it has a simple encryption component. To extend this Bulletin Board to use

bidirectional encryption, you could do this:

def CompositeBulletinBoardProtocol(**argd):

 ConnectionInfo = {}

 ConnectionInfo.update(argd)

 return Pipeline(

 DataDeChunker(),

 Decrypter(), # Decrypt on the way in

 LineOrientedInputBuffer(),

 Seq(

 Authenticator(State = ConnectionInfo),

 UserRetriever(State = ConnectionInfo),

 MessageBoardUI(State = ConnectionInfo),

 StateSaverLogout(State = ConnectionInfo),

)

 Encrypter(), # Encrypt on the way out

 DataChunker(),

)

You'd then need a corresponding client, which could be something like this:

Pipeline(ConsoleReader(""),

 Encrypter(), # Encrypt on the way out

 DataChunker(),

 TCPClient(ip, port=port),

 DataDeChunker(),

 Decrypter(), # Decrypt on the way in

 circular = True).run()

Other obvious extensions include implementing replies & deletion, additional folders.

Change to using a telnet protocol, to allow a richer UI. Provide API access to folders for a

web interface, etc. A pygame based client – using the TextBox components seen earlier, and

so on.

If you do extend it, please send feedback to the project!

A Tutorial Overview 79

Bulletin Board, Full source

import os

import cjson

import socket

import Axon

from Axon.Ipc import WaitComplete

from Axon.Ipc import producerFinished

from Axon.Component import component

from Kamaelia.Chassis.Pipeline import Pipeline

from Kamaelia.Chassis.ConnectedServer import \

 ServerCore

from Kamaelia.Chassis.Seq import Seq

def readUsers():

 f = open("users.passwd")

 users = f.read()

 f.close()

 users = cjson.decode(users)

 return users

class GotShutdownMessage(Exception):

 pass

class Folder(object):

 def __init__(self, folder="messages"):

 super(Folder, self).__init__()

 self.folder = folder

 try:

 f = open(self.folder + "/.meta")

 raw_meta = f.read()

 f.close()

 meta = cjson.decode(raw_meta)

 except IOError:

 meta = {"maxid": 0}

 self.meta = meta

 def getMessage(self, messageid):

 try:

 f = open(self.folder + "/" + \

 str(messageid))

 message = f.read()

 f.close()

 message = cjson.decode(message)

 return message

 except IOError:

 return None

 def getMessages(self):

 messages = []

 for i in os.listdir(self.folder):

 if i[:1] == ".":

 continue

 messages.append(self.getMessage(i))

 return messages

class LineOrientedInputBuffer(component):

 def main(self):

 linebuffer = []

 gotline = False

 line = ""

 try:

 while 1:

 # Get a line

 while (not gotline):

 if self.dataReady("control"):

 raise GotShutdownMessage()

 if self.dataReady("inbox"):

 msg = self.recv("inbox")

 if "\r\n" in msg:

 eol_i = msg.find("\r\n")+2

 linebuffer.append(msg[:eol_i])

 line = "".join(linebuffer)

 gotline = True

 linebuffer = [eol_i:]]

 else:

 linebuffer.append(msg)

 yield 1

 if self.dataReady("control"):

 raise GotShutdownMessage()

 # Wait for receiver to be ready

 while len(self.outboxes["outbox"]) > 0:

 self.pause()

 yield 1

 if self.dataReady("control"):

 raise GotShutdownMessage()

 # Send them the line, then repeat

 self.send(line, "outbox")

 yield 1

 gotline = False

 line = ""

 except GotShutdownMessage:

 self.send(self.recv("control"), "signal")

 return

 self.send(producerFinished(), "signal")

class RequestResponseComponent(component):

 def waitMsg(self):

 def _waitMsg(self):

 while (not self.dataReady("inbox")) and

 (not self.dataReady("control")):

 self.pause()

 yield 1

 return WaitComplete(_waitMsg(self))

 def checkControl(self):

 if self.dataReady("control"):

 raise GotShutdownMessage()

80

 def getMsg(self):

 if self.dataReady("control"):

 raise GotShutdownMessage()

 return self.recv("inbox")

 def netPrint(self, arg):

 self.send(arg + "\r\n", "outbox")

 def main(self):

 self.send("no protocol attached\r\n\r\n")

 self.send(producerFinished(), "signal")

 yield 1

class Authenticator(RequestResponseComponent):

 State = {}

 def main(self):

 loggedin = False

 try:

 self.netPrint("")

 while not loggedin:

 self.send("login: ", "outbox")

 yield self.waitMsg()

 username = self.getMsg()[:-2] # strip \r\n

 self.send("password: ", "outbox")

 yield self.waitMsg()

 password= self.getMsg()[:-2] # strip \r\n

 self.netPrint("")

 p = users.get(username.lower(), None)

 if p == password:

 self.netPrint("Login Successful")

 loggedin = True

 else:

 self.netPrint("Login Failed!")

 except GotShutdownMessage:

 self.send(self.recv("control"), "signal")

 if loggedin:

 self.State["remoteuser"] = username

class UserRetriever(RequestResponseComponent):

 State = {}

 def main(self):

 self.netPrint("")

 self.netPrint("Retrieving user data...")

 self.netPrint("")

 yield 1

class StateSaverLogout(RequestResponseComponent):

 State = {}

 def main(self):

 self.netPrint("")

 self.netPrint("Saving user data...")

 self.netPrint("")

 self.netPrint("Goodbye!")

 self.netPrint("")

 yield 1

class MessageBoardUI(RequestResponseComponent):

 State = {}

 def doMainHelp(self):

 self.netPrint("<return> - browse messages")

 self.netPrint("h – help")

 self.netPrint("q - quit")

 def getUnreadMessages(self, user):

 X = Folder()

 return X.getMessages()

 def displayMessage(self, message):

 self.netPrint("")

 for key in ["message", "date", "from",

 "to", "subject",]:

 self.netPrint("%s: %s" % (key,

 message[key]))

 if len(message["reply-to"]) > 0:

 replies = ", ".join(message["reply-to"])

 self.netPrint("In-Reply-To: "+ replies)

 self.netPrint("")

 self.netPrint(message["__body__"])

 def doMessagesHelp(self):

 self.netPrint("<return> - next message")

 self.netPrint("r - Reply (TBD)")

 self.netPrint("d - Delete message (TBD)")

 self.netPrint("h – Help")

 self.netPrint("x - eXit to main menu")

 def doMessagesMenu(self, user):

 try:

 messages = self.getUnreadMessages(user)

 while len(messages) > 0:

 self.netPrint("")

 n = str(len(messages))

 self.netPrint("You have "+ n +

 " message(s) waiting")

 self.send("messages> ", "outbox")

 yield self.waitMsg()

 command = self.getMsg()[:-2]

 if command == "":

 message = messages.pop(0)

 self.displayMessage(message)

 if command == "x":

 break

 if command == "h":

 self.doMessagesHelp()

 except GotShutdownMessage:

 pass # Expect the caller to check for

 # control as well

81

 def main(self):

 user = self.State.get("remoteuser",

 "anonymous")

 try:

 self.netPrint("")

 self.netPrint("Hello, "+user)

 while 1:

 self.send("main> ", "outbox")

 yield self.waitMsg()

 command = self.getMsg()[:-2]

 if command == "h":

 self.doMainHelp()

 if command == "q":

 break

 if command == "":

 yield \

 WaitComplete(self.doMessagesMenu(user))

 self.checkControl()

 except GotShutdownMessage:

 self.send(self.recv("control"), "signal")

 yield 1

def CompositeBulletinBoardProtocol(**argd):

 ConnectionInfo = {}

 ConnectionInfo.update(argd)

 return Pipeline(

 LineOrientedInputBuffer(),

 Seq(

 Authenticator(State = ConnectionInfo),

 UserRetriever(State = ConnectionInfo),

 MessageBoardUI(State = ConnectionInfo),

 StateSaverLogout(State = ConnectionInfo),

)

)

users = readUsers()

ServerCore(protocol=CompositeBulletinBoardProtocol,

 socketOptions=(socket.SOL_SOCKET,

 socket.SO_REUSEADDR, 1),

 port=1600).run()

82

6 Where next?

Well, this is the end of this tutorial, but hopefully it's shown a handful of scenarios where

using Kamaelia can simplify creating solutions to a problem, in ways that are naturally

concurrent.

Beyond this, most of Kamaelia has been driven by a variety of real world problems, or

needs. As a result, over time there have been a number of documents and presentations

done describing these, each of which may be useful in taking your understanding of

Kamaelia further.

However none of these are any substitute for writing your own systems. You may find that

early systems just use Axon.Handle, or even just embed a networked python interpreter to

assist with debugging non-Kamaelia systems.

Getting Help

The Kamelia IRC channel on freenode is generally inhabited by friendly people, welcoming

people new to both python and Kamaelia. Details:

• Channel: #kamaelia

• Network: irc.freenode.net

• Logs: http://www.kamaelia.org/logs/ (the use of logs can lead to asynchronous

conversations – meaning a reply seconds or hours later)

Kamaelia's email is divided between sourceforge & google groups.

• General Kamaelia conversations : http://groups.google.com/group/kamaelia/

• Version control commits - kamaelia-commits@lists.sourceforge.net

https://lists.sourceforge.net/lists/listinfo/kamaelia-commits

Information sources:

• Slideshare presentations: http://www.slideshare.net/tag/kamaelia

• Kamaelia website: http://www.kamaelia.org/

• Cookbook - http://www.kamaelia.org/Cookbook

• Component reference - http://www.kamaelia.org/Components

• Axon reference - http://www.kamaelia.org/Docs/Axon/Axon

• http://www.kamaelia.org/Developers/

• Michael's Kamaelia (mainly) blog: http://yeoldeclue.com/blog

• BBC Kamaelia Whitepaper: http://www.bbc.co.uk/rd/pubs/whp/whp113.shtml

Code Repository

• http://code.google.com/p/kamaelia/

Code Layout:

• /trunk/Sketches – shared workspace for “work in progress” - contains a lot of code

to take inspiration form.

A Tutorial Overview 83

• /trunk/Code/Python – Where most Kamaelia releases come from

• /trunk/Code/Python/Axon – Where Axon lives

• /trunk/Code/Python/Kamaelia – Where the bulk of Kamaelia lives

• /trunk/Code/Python/Apps – Kamaelia based applications

• /trunk/Code/Python/Bindings – Bindings for various libraries written during

the project lifetime.

Getting Kamaelia

See also: http://www.kamaelia.org/GetKamaelia .

Step 1 - Get Kamaelia & Install it

Get the latest version from here:

http://www.kamaelia.org/release/

Install:
 ~/ > tar zxf Kamaelia-0.6.0.tar.gz

 ~/ > cd Kamaelia-0.6.0/

 ~/Kamaelia-0.6.0 > sudo python setup.py install

Step 2 - Run & Tweak the Examples

Many of these require pygame or similar libraries. You'll find many examples in the

examples directory. You will also find a large number of examples in the Kamaelia Cookbook

Step 3 - Start writing your own components

Hopefully this tutorial is a good starting point!

Step 4 - Wire up your component to a new system

The best way to get started here is to look at the examples in the already Kamaelia

Cookbook mentioned. You'll be looking at using a number of the components from the

reference area.

Step 5 - Build something new

All sorts of possible ideas exist here - as inspiration please look at the GetKamaelia page

for a jumping off point.

Acknowledgements

Kamaelia was started by Michael Sparks at BBC Research, and would not be the state it's

in without the support of numerous people, including Peter Shelswell, Ian Childs, Brandon

Butterworth, Tim Borer, Joseph Lord, Matt Hammond, Tom Loosemore, Matt Biddulph,

Gareth Smith, Sylvain Hellegouarch, the many GSOC students who have worked with the

project, and the many who have posed hard questions, improving Kamaelia. Matt H &

Joseph merit special thanks for the sheer amount of time and effort they have contributed

over the years. Kamaelia would not be what it is without them.

Finally, many thanks to my wife Polina for her unwavering patience with me working on this

project.

84 Kamaelia

	Summary
	2.2 Scheduler - A means of running lots of microprocesses
	2.3 Interlude
	2.4 Simple Component - Microprocesses with standard
external interfaces
	2.5 Postman - A Microprocess that performs deliveries!
	2.7 Summary
	3.1 Components
	3.2 Syntactic Sugar For Components
	3.3 Building Components
	3.3.1 Katas
	Syntactic Sugar

	3.6 Graphlines
	3.7 Incrementally Growing Systems: Nesting Pipelines & Graphlines
	3.8 PAR Components
	3.10.1 Services ?

	3.11 Server Core
	4 Kamaelia, in non-Kamaelia Systems
	4.1 Axon.Handle
	4.1.1 File Handles vs Axon Handles

	4.2 Augmenting Existing Systems
	4.3 Using Axon.Handles with Kamaelia Systems
	4.4 Embedding a Python Interpreter
	4.4.2 Health Warning

	5.1 Building up the initial protocol
	Bulletin Board, Full source
	Getting Kamaelia
	Acknowledgements

